• Title/Summary/Keyword: Machine Learning (SVM)

Search Result 640, Processing Time 0.026 seconds

Concurrent Support Vector Machine Processor (Concurrent Support Vector Machine 프로세서)

  • 위재우;이종호
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.8
    • /
    • pp.578-584
    • /
    • 2004
  • The CSVM(Current Support Vector Machine) that is a digital architecture performing all phases of recognition process including kernel computing, learning, and recall of SVM(Support Vector Machine) on a chip is proposed. Concurrent operation by parallel architecture of elements generates high speed and throughput. The classification problems of bio data having high dimension are solved fast and easily using the CSVM. Quadratic programming in original SVM learning algorithm is not suitable for hardware implementation, due to its complexity and large memory consumption. Hardware-friendly SVM learning algorithms, kernel adatron and kernel perceptron, are embedded on a chip. Experiments on fixed-point algorithm having quantization error are performed and their results are compared with floating-point algorithm. CSVM implemented on FPGA chip generates fast and accurate results on high dimensional cancer data.

A Study on Identification of Track Irregularity of High Speed Railway Track Using an SVM (SVM을 이용한 고속철도 궤도틀림 식별에 관한 연구)

  • Kim, Ki-Dong;Hwang, Soon-Hyun
    • Journal of Industrial Technology
    • /
    • v.33 no.A
    • /
    • pp.31-39
    • /
    • 2013
  • There are two methods to make a distinction of deterioration of high-speed railway track. One is that an administrator checks for each attribute value of track induction data represented in graph and determines whether maintenance is needed or not. The other is that an administrator checks for monthly trend of attribute value of the corresponding section and determines whether maintenance is needed or not. But these methods have a weak point that it takes longer times to make decisions as the amount of track induction data increases. As a field of artificial intelligence, the method that a computer makes a distinction of deterioration of high-speed railway track automatically is based on machine learning. Types of machine learning algorism are classified into four type: supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning. This research uses supervised learning that analogizes a separating function form training data. The method suggested in this research uses SVM classifier which is a main type of supervised learning and shows higher efficiency binary classification problem. and it grasps the difference between two groups of data and makes a distinction of deterioration of high-speed railway track.

  • PDF

Design of SVM-Based Gas Classifier with Self-Learning Capability (자가학습 가능한 SVM 기반 가스 분류기의 설계)

  • Jeong, Woojae;Jung, Yunho
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1400-1407
    • /
    • 2019
  • In this paper, we propose a support vector machine (SVM) based gas classifier that can support real-time self-learning. The modified sequential minimal optimization (MSMO) algorithm is employed to train the proposed SVM. By using a shared structure for learning and classification, the proposed SVM reduced the hardware area by 35% compared to the existing architecture. Our system was implemented with 3,337 CLB (configurable logic block) LUTs (look-up table) with Xilinx Zynq UltraScale+ FPGA (field programmable gate array) and verified that it can operate at the clock frequency of 108MHz.

Comparison of Machine Learning-Based Radioisotope Identifiers for Plastic Scintillation Detector

  • Jeon, Byoungil;Kim, Jongyul;Yu, Yonggyun;Moon, Myungkook
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.4
    • /
    • pp.204-212
    • /
    • 2021
  • Background: Identification of radioisotopes for plastic scintillation detectors is challenging because their spectra have poor energy resolutions and lack photo peaks. To overcome this weakness, many researchers have conducted radioisotope identification studies using machine learning algorithms; however, the effect of data normalization on radioisotope identification has not been addressed yet. Furthermore, studies on machine learning-based radioisotope identifiers for plastic scintillation detectors are limited. Materials and Methods: In this study, machine learning-based radioisotope identifiers were implemented, and their performances according to data normalization methods were compared. Eight classes of radioisotopes consisting of combinations of 22Na, 60Co, and 137Cs, and the background, were defined. The training set was generated by the random sampling technique based on probabilistic density functions acquired by experiments and simulations, and test set was acquired by experiments. Support vector machine (SVM), artificial neural network (ANN), and convolutional neural network (CNN) were implemented as radioisotope identifiers with six data normalization methods, and trained using the generated training set. Results and Discussion: The implemented identifiers were evaluated by test sets acquired by experiments with and without gain shifts to confirm the robustness of the identifiers against the gain shift effect. Among the three machine learning-based radioisotope identifiers, prediction accuracy followed the order SVM > ANN > CNN, while the training time followed the order SVM > ANN > CNN. Conclusion: The prediction accuracy for the combined test sets was highest with the SVM. The CNN exhibited a minimum variation in prediction accuracy for each class, even though it had the lowest prediction accuracy for the combined test sets among three identifiers. The SVM exhibited the highest prediction accuracy for the combined test sets, and its training time was the shortest among three identifiers.

Android Malware Detection using Machine Learning Techniques KNN-SVM, DBN and GRU

  • Sk Heena Kauser;V.Maria Anu
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.202-209
    • /
    • 2023
  • Android malware is now on the rise, because of the rising interest in the Android operating system. Machine learning models may be used to classify unknown Android malware utilizing characteristics gathered from the dynamic and static analysis of an Android applications. Anti-virus software simply searches for the signs of the virus instance in a specific programme to detect it while scanning. Anti-virus software that competes with it keeps these in large databases and examines each file for all existing virus and malware signatures. The proposed model aims to provide a machine learning method that depend on the malware detection method for Android inability to detect malware apps and improve phone users' security and privacy. This system tracks numerous permission-based characteristics and events collected from Android apps and analyses them using a classifier model to determine whether the program is good ware or malware. This method used the machine learning techniques KNN-SVM, DBN, and GRU in which help to find the accuracy which gives the different values like KNN gives 87.20 percents accuracy, SVM gives 91.40 accuracy, Naive Bayes gives 85.10 and DBN-GRU Gives 97.90. Furthermore, in this paper, we simply employ standard machine learning techniques; but, in future work, we will attempt to improve those machine learning algorithms in order to develop a better detection algorithm.

KOMPSAT-3A Urban Classification Using Machine Learning Algorithm - Focusing on Yang-jae in Seoul - (기계학습 기법에 따른 KOMPSAT-3A 시가화 영상 분류 - 서울시 양재 지역을 중심으로 -)

  • Youn, Hyoungjin;Jeong, Jongchul
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1567-1577
    • /
    • 2020
  • Urban land cover classification is role in urban planning and management. So, it's important to improve classification accuracy on urban location. In this paper, machine learning model, Support Vector Machine (SVM) and Artificial Neural Network (ANN) are proposed for urban land cover classification based on high resolution satellite imagery (KOMPSAT-3A). Satellite image was trained based on 25 m rectangle grid to create training data, and training models used for classifying test area. During the validation process, we presented confusion matrix for each result with 250 Ground Truth Points (GTP). Of the four SVM kernels and the two activation functions ANN, the SVM Polynomial kernel model had the highest accuracy of 86%. In the process of comparing the SVM and ANN using GTP, the SVM model was more effective than the ANN model for KOMPSAT-3A classification. Among the four classes (building, road, vegetation, and bare-soil), building class showed the lowest classification accuracy due to the shadow caused by the high rise building.

Comparison of Boosting and SVM

  • Kim, Yong-Dai;Kim, Kyoung-Hee;Song, Seuck-Heun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.999-1012
    • /
    • 2005
  • We compare two popular algorithms in current machine learning and statistical learning areas, boosting method represented by AdaBoost and kernel based SVM (Support Vector Machine) using 13 real data sets. This comparative study shows that boosting method has smaller prediction error in data with heavy noise, whereas SVM has smaller prediction error in the data with little noise.

  • PDF

Comparison of Machine Learning Classification Models for the Development of Simulators for General X-ray Examination Education (일반엑스선검사 교육용 시뮬레이터 개발을 위한 기계학습 분류모델 비교)

  • Lee, In-Ja;Park, Chae-Yeon;Lee, Jun-Ho
    • Journal of radiological science and technology
    • /
    • v.45 no.2
    • /
    • pp.111-116
    • /
    • 2022
  • In this study, the applicability of machine learning for the development of a simulator for general X-ray examination education is evaluated. To this end, k-nearest neighbor(kNN), support vector machine(SVM) and neural network(NN) classification models are analyzed to present the most suitable model by analyzing the results. Image data was obtained by taking 100 photos each corresponding to Posterior anterior(PA), Posterior anterior oblique(Obl), Lateral(Lat), Fan lateral(Fan lat). 70% of the acquired 400 image data were used as training sets for learning machine learning models and 30% were used as test sets for evaluation. and prediction model was constructed for right-handed PA, Obl, Lat, Fan lat image classification. Based on the data set, after constructing the classification model using the kNN, SVM, and NN models, each model was compared through an error matrix. As a result of the evaluation, the accuracy of kNN was 0.967 area under curve(AUC) was 0.993, and the accuracy of SVM was 0.992 AUC was 1.000. The accuracy of NN was 0.992 and AUC was 0.999, which was slightly lower in kNN, but all three models recorded high accuracy and AUC. In this study, right-handed PA, Obl, Lat, Fan lat images were classified and predicted using the machine learning classification models, kNN, SVM, and NN models. The prediction showed that SVM and NN were the same at 0.992, and AUC was similar at 1.000 and 0.999, indicating that both models showed high predictive power and were applicable to educational simulators.

Hand Gesture Classification Using Multiple Doppler Radar and Machine Learning (다중 도플러 레이다와 머신러닝을 이용한 손동작 인식)

  • Baik, Kyung-Jin;Jang, Byung-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.1
    • /
    • pp.33-41
    • /
    • 2017
  • This paper suggests a hand gesture recognition technology to control smart devices using multiple Doppler radars and a support vector machine(SVM), which is one of the machine learning algorithms. Whereas single Doppler radar can recognize only simple hand gestures, multiple Doppler radar can recognize various and complex hand gestures by using various Doppler patterns as a function of time and each device. In addition, machine learning technology can enhance recognition accuracy. In order to determine the feasibility of the suggested technology, we implemented a test-bed using two Doppler radars, NI DAQ USB-6008, and MATLAB. Using this test-bed, we can successfully classify four hand gestures, which are Push, Pull, Right Slide, and Left Slide. Applying SVM machine learning algorithm, it was confirmed the high accuracy of the hand gesture recognition.

A Study on Performance Comparison of Machine Learning Algorithm for Scaffold Defect Classification (인공지지체 불량 분류를 위한 기계 학습 알고리즘 성능 비교에 관한 연구)

  • Lee, Song-Yeon;Huh, Yong Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.77-81
    • /
    • 2020
  • In this paper, we create scaffold defect classification models using machine learning based data. We extract the characteristic from collected scaffold external images using USB camera. SVM, KNN, MLP algorithm of machine learning was using extracted features. Classification models of three type learned using train dataset. We created scaffold defect classification models using test dataset. We quantified the performance of defect classification models. We have confirmed that the SVM accuracy is 95%. So the best performance model is using SVM.