• Title/Summary/Keyword: Machine Learning #2

Search Result 1,718, Processing Time 0.026 seconds

Automatic TV Program Recommendation using LDA based Latent Topic Inference (LDA 기반 은닉 토픽 추론을 이용한 TV 프로그램 자동 추천)

  • Kim, Eun-Hui;Pyo, Shin-Jee;Kim, Mun-Churl
    • Journal of Broadcast Engineering
    • /
    • v.17 no.2
    • /
    • pp.270-283
    • /
    • 2012
  • With the advent of multi-channel TV, IPTV and smart TV services, excessive amounts of TV program contents become available at users' sides, which makes it very difficult for TV viewers to easily find and consume their preferred TV programs. Therefore, the service of automatic TV recommendation is an important issue for TV users for future intelligent TV services, which allows to improve access to their preferred TV contents. In this paper, we present a recommendation model based on statistical machine learning using a collaborative filtering concept by taking in account both public and personal preferences on TV program contents. For this, users' preference on TV programs is modeled as a latent topic variable using LDA (Latent Dirichlet Allocation) which is recently applied in various application domains. To apply LDA for TV recommendation appropriately, TV viewers's interested topics is regarded as latent topics in LDA, and asymmetric Dirichlet distribution is applied on the LDA which can reveal the diversity of the TV viewers' interests on topics based on the analysis of the real TV usage history data. The experimental results show that the proposed LDA based TV recommendation method yields average 66.5% with top 5 ranked TV programs in weekly recommendation, average 77.9% precision in bimonthly recommendation with top 5 ranked TV programs for the TV usage history data of similar taste user groups.

A Study on the Estimation of the Threshold Rainfall in Standard Watershed Units (표준유역단위 한계강우량 산정에 관한 연구)

  • Choo, Kyung-Su;Kang, Dong-Ho;Kim, Byung-Sik
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.2
    • /
    • pp.1-11
    • /
    • 2021
  • Recently, in Korea, the risk of meteorological disasters is increasing due to climate change, and the damage caused by rainfall is being emphasized continuously. Although the current weather forecast provides quantitative rainfall, there are several difficulties in predicting the extent of damage. Therefore, in order to understand the impact of damage, the threshold rainfall for each watershed is required. The damage caused by rainfall occurs differently by region, and there are limitations in the analysis considering the characteristic factors of each watershed. In addition, whenever rainfall comes, the analysis of rainfall-runoff through the hydrological model consumes a lot of time and is often analyzed using only simple rainfall data. This study used GIS data and calculated the threshold rainfall from the threshold runoff causing flooding by coupling two hydrologic models. The calculation result was verified by comparing it with the actual case, and it was analyzed that damage occurred in the dangerous area in general. In the future, through this study, it will be possible to prepare for flood risk areas in advance, and it is expected that the accuracy will increase if machine learning analysis methods are added.

Home Economics Teachers' Concern and Perception about Home Economics Education Using the Latest Technology in the Era of the 4th Industrial Revolution (4차 산업혁명 시대의 최신 기술을 활용한 가정과교육에 대한 가정과교사의 관심과 인식)

  • Eui Jung Kim;Won Joon Lee;Do Ha Jeong;Sung Mi Cho;Jung Hyun Chae
    • Human Ecology Research
    • /
    • v.61 no.4
    • /
    • pp.673-686
    • /
    • 2023
  • The purpose of this study was to identify home economics (HE) teachers' concerns about and perceptions of HE education using the latest technologies in the era of the 4th Industrial Revolution and to reveal whether they differ according to teachers' general background variables. The questionnaire survey method to measure HE teachers' concerns and perceptions of HE education using the latest technologies in the era of the 4th Industrial Revolution was conducted online using the Google Questionnaire from which 150 responses were received. The main results were as follows. Firstly, HE teachers scored an average of 3.46 out of 5 for the latest technology. Among these interests in the latest technology, interest in "augmented reality and virtual reality technologies" scored the highest at an average of 3.80, while interest in "neural network machine learning" (2.78) was low. HE teacher's concerns about HE education using the latest technologies in the era of the 4th Industrial Revolution were high, with an average score of 4.40. Among these concerns for the latest technology, "concern about the results of HE education using the latest technology" scored the highest at 4.53. HE teachers' anxiety about the latest teaching technology in the era of the 4th Industrial Revolution was moderate, averaging 3.05. The highest form of anxiety was "anxiety about the impact on the job" (4.03) and the lowest was fear of "the disappearance of the teacher's job" (2.50). HE teachers' innovation resistance to the latest teaching technology was low at 2.18. Expectations of the latest technology in HE classes in the era of the 4th Industrial Revolution averaged 3.85, slightly higher than the middle of 3.

Application of Support Vector Regression for Improving the Performance of the Emotion Prediction Model (감정예측모형의 성과개선을 위한 Support Vector Regression 응용)

  • Kim, Seongjin;Ryoo, Eunchung;Jung, Min Kyu;Kim, Jae Kyeong;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.185-202
    • /
    • 2012
  • .Since the value of information has been realized in the information society, the usage and collection of information has become important. A facial expression that contains thousands of information as an artistic painting can be described in thousands of words. Followed by the idea, there has recently been a number of attempts to provide customers and companies with an intelligent service, which enables the perception of human emotions through one's facial expressions. For example, MIT Media Lab, the leading organization in this research area, has developed the human emotion prediction model, and has applied their studies to the commercial business. In the academic area, a number of the conventional methods such as Multiple Regression Analysis (MRA) or Artificial Neural Networks (ANN) have been applied to predict human emotion in prior studies. However, MRA is generally criticized because of its low prediction accuracy. This is inevitable since MRA can only explain the linear relationship between the dependent variables and the independent variable. To mitigate the limitations of MRA, some studies like Jung and Kim (2012) have used ANN as the alternative, and they reported that ANN generated more accurate prediction than the statistical methods like MRA. However, it has also been criticized due to over fitting and the difficulty of the network design (e.g. setting the number of the layers and the number of the nodes in the hidden layers). Under this background, we propose a novel model using Support Vector Regression (SVR) in order to increase the prediction accuracy. SVR is an extensive version of Support Vector Machine (SVM) designated to solve the regression problems. The model produced by SVR only depends on a subset of the training data, because the cost function for building the model ignores any training data that is close (within a threshold ${\varepsilon}$) to the model prediction. Using SVR, we tried to build a model that can measure the level of arousal and valence from the facial features. To validate the usefulness of the proposed model, we collected the data of facial reactions when providing appropriate visual stimulating contents, and extracted the features from the data. Next, the steps of the preprocessing were taken to choose statistically significant variables. In total, 297 cases were used for the experiment. As the comparative models, we also applied MRA and ANN to the same data set. For SVR, we adopted '${\varepsilon}$-insensitive loss function', and 'grid search' technique to find the optimal values of the parameters like C, d, ${\sigma}^2$, and ${\varepsilon}$. In the case of ANN, we adopted a standard three-layer backpropagation network, which has a single hidden layer. The learning rate and momentum rate of ANN were set to 10%, and we used sigmoid function as the transfer function of hidden and output nodes. We performed the experiments repeatedly by varying the number of nodes in the hidden layer to n/2, n, 3n/2, and 2n, where n is the number of the input variables. The stopping condition for ANN was set to 50,000 learning events. And, we used MAE (Mean Absolute Error) as the measure for performance comparison. From the experiment, we found that SVR achieved the highest prediction accuracy for the hold-out data set compared to MRA and ANN. Regardless of the target variables (the level of arousal, or the level of positive / negative valence), SVR showed the best performance for the hold-out data set. ANN also outperformed MRA, however, it showed the considerably lower prediction accuracy than SVR for both target variables. The findings of our research are expected to be useful to the researchers or practitioners who are willing to build the models for recognizing human emotions.

Prediction of Urban Flood Extent by LSTM Model and Logistic Regression (LSTM 모형과 로지스틱 회귀를 통한 도시 침수 범위의 예측)

  • Kim, Hyun Il;Han, Kun Yeun;Lee, Jae Yeong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.3
    • /
    • pp.273-283
    • /
    • 2020
  • Because of climate change, the occurrence of localized and heavy rainfall is increasing. It is important to predict floods in urban areas that have suffered inundation in the past. For flood prediction, not only numerical analysis models but also machine learning-based models can be applied. The LSTM (Long Short-Term Memory) neural network used in this study is appropriate for sequence data, but it demands a lot of data. However, rainfall that causes flooding does not appear every year in a single urban basin, meaning it is difficult to collect enough data for deep learning. Therefore, in addition to the rainfall observed in the study area, the observed rainfall in another urban basin was applied in the predictive model. The LSTM neural network was used for predicting the total overflow, and the result of the SWMM (Storm Water Management Model) was applied as target data. The prediction of the inundation map was performed by using logistic regression; the independent variable was the total overflow and the dependent variable was the presence or absence of flooding in each grid. The dependent variable of logistic regression was collected through the simulation results of a two-dimensional flood model. The input data of the two-dimensional flood model were the overflow at each manhole calculated by the SWMM. According to the LSTM neural network parameters, the prediction results of total overflow were compared. Four predictive models were used in this study depending on the parameter of the LSTM. The average RMSE (Root Mean Square Error) for verification and testing was 1.4279 ㎥/s, 1.0079 ㎥/s for the four LSTM models. The minimum RMSE of the verification and testing was calculated as 1.1655 ㎥/s and 0.8797 ㎥/s. It was confirmed that the total overflow can be predicted similarly to the SWMM simulation results. The prediction of inundation extent was performed by linking the logistic regression with the results of the LSTM neural network, and the maximum area fitness was 97.33 % when more than 0.5 m depth was considered. The methodology presented in this study would be helpful in improving urban flood response based on deep learning methodology.

Efficient use of artificial intelligence ChatGPT in educational ministry (인공지능 챗GPT의 교육목회에 효율적인 활용방안)

  • Jang Heum Ok
    • Journal of Christian Education in Korea
    • /
    • v.78
    • /
    • pp.57-85
    • /
    • 2024
  • Purpose of the study: In order to utilize artificial intelligence-generated AI in educational ministry, this study analyzes the concept of artificial intelligence and generative AI and the educational theological aspects of educational ministry to find ways to efficiently utilize artificial intelligence ChatGPT in educational ministry. Contents and methods of the study: The contents of this study are. First, the contents of this study were analyzed by dividing the concepts of artificial intelligence and generative AI into the concept of artificial intelligence, types of artificial intelligence, and generative language model AI ChatGPT. Second, the educational theological analysis of educational ministry was divided into the concept of educational ministry, the goals of educational ministry, the content of educational ministry, and the direction of educational ministry in the era of artificial intelligence. Third, the plan to use artificial intelligence ChatGPT in educational ministry is to provide tools for writing sermon manuscripts, preparation tools for worship and prayer, and church education, focusing on the five functions of the early church community. It was analyzed by dividing it into tools for teaching, tools for teaching materials for believers, and tools for serving and volunteering. Conclusion and Recommendation: The conclusion of this study is that, first, when writing sermon manuscripts through artificial intelligence ChatGPT, high-quality sermon manuscripts can be written through the preacher's spirituality, faith, and insight. Second, through artificial intelligence ChatGPT, you can efficiently design and plan worship services and prepare services that serve the congregation objectively through various scenarios. Third, by using artificial intelligence ChatGPT in church education, it can be used while maintaining a complementary relationship with teachers through collaboration with human and artificial intelligence teachers. Fourth, through artificial intelligence ChatGPT, we provide a program that allows members of the church community to share spiritual fellowship, a plan to meet the needs of church members and strengthen interdependence, and an attitude of actively welcoming new people and respecting diversity. It provides useful materials that can play an important role in giving, loving, serving, and growing together in the love of Christ. Lastly, through artificial intelligence ChatGPT, we are seeking ways to provide various information about volunteer activities, learning support for children and youth in the community, mentoring-related programs, and playing a leading role in forming a village community in the local community.

A Study on the Turbidity Estimation Model Using Data Mining Techniques in the Water Supply System (데이터마이닝 기법을 이용한 상수도 시스템 내의 탁도 예측모형 개발에 관한 연구)

  • Park, No-Suk;Kim, Soonho;Lee, Young Joo;Yoon, Sukmin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.2
    • /
    • pp.87-95
    • /
    • 2016
  • Turbidity is a key indicator to the user that the 'Discolored Water' phenomenon known to be caused by corrosion of the pipeline in the water supply system. 'Discolored Water' is defined as a state with a turbidity of the degree to which the user visually be able to recognize water. Therefore, this study used data mining techniques in order to estimate turbidity changes in water supply system. Decision tree analysis was applied in data mining techniques to develop estimation models for turbidity changes in the water supply system. The pH and residual chlorine dataset was used as variables of the turbidity estimation model. As a result, the case of applying both variables(pH and residual chlorine) were shown more reasonable estimation results than models only using each variable. However, the estimation model developed in this study were shown to have underestimated predictions for the peak observed values. To overcome this disadvantage, a high-pass filter method was introduced as a pretreatment of estimation model. Modified model using high-pass filter method showed more exactly predictions for the peak observed values as well as improved prediction performance than the conventional model.

Study on the Direction of Universal Big Data and Big Data Education-Based on the Survey of Big Data Experts (보편적 빅데이터와 빅데이터 교육의 방향성 연구 - 빅데이터 전문가의 인식 조사를 기반으로)

  • Park, Youn-Soo;Lee, Su-Jin
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.2
    • /
    • pp.201-214
    • /
    • 2020
  • Big data is gradually expanding in diverse fields, with changing the data-related legislation. Moreover it would be interest in big data education. However, it requires a high level of knowledge and skills in order to utilize Big Data and it takes a long time for education spends a lot of money for training. We study that in order to define Universal Big Data used to the industrial field in a wide range. As a result, we make the paradigm for Big Data education for college students. We survey to the professional the Big Data definition and the Big Data perception. According to the survey, the Big Data related-professional recognize that is a wider definition than Computer Science Big Data is. Also they recognize that the Big Data Processing dose not be required Big Data Processing Frameworks or High Performance Computers. This means that in order to educate Big Data, it is necessary to focus on the analysis methods and application methods of Universal Big Data rather than computer science (Engineering) knowledge and skills. Based on the our research, we propose the Universal Big Data education on the new paradigm.

Application of groundwater-level prediction models using data-based learning algorithms to National Groundwater Monitoring Network data (자료기반 학습 알고리즘을 이용한 지하수위 변동 예측 모델의 국가지하수관측망 자료 적용에 대한 비교 평가 연구)

  • Yoon, Heesung;Kim, Yongcheol;Ha, Kyoochul;Kim, Gyoo-Bum
    • The Journal of Engineering Geology
    • /
    • v.23 no.2
    • /
    • pp.137-147
    • /
    • 2013
  • For the effective management of groundwater resources, it is necessary to predict groundwater level fluctuations in response to rainfall events. In the present study, time series models using artificial neural networks (ANNs) and support vector machines (SVMs) have been developed and applied to groundwater level data from the Gasan, Shingwang, and Cheongseong stations of the National Groundwater Monitoring Network. We designed four types of model according to input structure and compared their performances. The results show that the rainfall input model is not effective, especially for the prediction of groundwater recession behavior; however, the rainfall-groundwater input model is effective for the entire prediction stage, yielding a high model accuracy. Recursive prediction models were also effective, yielding correlation coefficients of 0.75-0.95 with observed values. The prediction errors were highest for Shingwang station, where the cross-correlation coefficient is lowest among the stations. Overall, the model performance of SVM models was slightly higher than that of ANN models for all cases. Assessment of the model parameter uncertainty of the recursive prediction models, using the ratio of errors in the validation stage to that in the calibration stage, showed that the range of the ratio is much narrower for the SVM models than for the ANN models, which implies that the SVM models are more stable and effective for the present case studies.

Analysis of Hibernating Habitat of Asiatic Black Bear(Ursus thibetanus ussuricus ) based on the Presence-Only Model using MaxEnt and Geographic Information System: A Comparative Study of Habitat for Non-Hibernating Period (MaxEnt와 GIS를 활용한 반달가슴곰 동면장소 분석: 비동면 기간 동안의 서식지 비교 연구)

  • JUNG, Dae-Ho;KAHNG, Byung-Seon;CHO, Chae-Un;KIM, Seok-Beom;KIM, Jeong-Jin
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.3
    • /
    • pp.102-113
    • /
    • 2016
  • This study analyzes the geographic information system (GIS) and machine learning models to understand the relationship between the appearance of hibernation sites and habitats in order to systematically manage the habitat of Asiatic Black Bear(Ursus thibetanus ussuricus) inhabiting Jirisan National Park, South Korea. The most important environmental factors influencing the hibernation sites was found to be the inclination(41.4%), followed by altitude(20.4%), distance from the trail(10.9%), and age group(7.7%) in the order of their contribution. A comparison between the hibernation habitat and the normal habitat of Asiatic Black Bear indicated that the average altitude of the hibernation sites was 63m, whereas the average altitude of the normal habitat was approximately 400m. The average inclination was found to be $7^{\circ}$, and a preference for the steeper inclination of $12-43^{\circ}$ was also observed. The average distance of the hibernation site from the road was approximately 300m; the range of separation distance was found to be 1,300-2,400m. This was thought to be the result of a safer selection of winter hibernation site by preventing human contact and outside invasion. This study analyzes the habitat environmental factors for the selection of hibernation sites that prevent severe cold and other threats during the hibernation period in order to provide fundamental data for hibernation ecology and habitat management of Asiatic Black Bear.