• 제목/요약/키워드: Machine Learning #2

검색결과 1,718건 처리시간 0.028초

워드임베딩을 활용한 복압성 요실금 관련 연구 동향에 관한 융합 연구 (A Convergence Study of the Research Trends on Stress Urinary Incontinence using Word Embedding)

  • 김준희;안선희;곽경태;원영수;유화익
    • 한국융합학회논문지
    • /
    • 제12권8호
    • /
    • pp.1-11
    • /
    • 2021
  • 본 연구의 목적은 '복압성 요실금'을 키워드로 검색된 연구들의 경향과 특성을 단어 빈도를 통해 분석하고, 워드 임베딩을 사용하여 그 관계를 모델링 하고자 하였다. 의학 서지 데이터베이스인 MEDLINE에 등록되어 있는 복압성 요실금 연구 9,868개 논문들의 초록 문자 데이터를 Python 프로그램을 이용하여 추출하였다. 그런 다음 빈도 분석을 통해 10개의 키워드를 선택하였다. 키워드 관련 단어들의 유사도는 Word2Vec 머신러닝 알고리즘으로 분석하였다. 그리고, t-SNE 기법을 사용하여 단어의 위치와 거리가 시각화하였고, 이에 따라 그룹을 분류하여 이를 분석하였다. 복압성 요실금과 관련된 연구는 1980년대 이후 빠르게 증가했다. 키워드 분석을 통해 논문 초록에서 가장 많이 사용된 키워드는 '여성', '요도', '수술'로 나타났다. Word2Vec 모델링을 통해 복압성 요실금 관련 연구에서 주요 키워드들과 가장 높은 연관성을 나타내는 단어들에는 '여성', '절박', '증상' 등이 있었다. 그리고, t-SNE 기법을 통해 키워드와 관련 단어들은 복압성 요실금의 증상, 신체 기관의 해부학적 특성, 그리고 수술적 중재를 중심으로 하는 3개의 그룹으로 분류될 수 있었다. 본 연구는 초록을 구성하는 단어들의 키워드 빈도 분석 및 워드임베딩 방식을 이용하여 복압성 요실금 관련 연구들의 동향을 살펴본 최초의 연구이다. 본 연구의 결과는 향후 연구자들이 복압성 요실금 관련 연구 분야의 주제와 방향성을 선택하는 데 있어 기초자료로 활용될 수 있을 것이다.

선박 갑판에서 이미지 기반 이동로봇 주행에 관한 연구 (A Study on Image-Based Mobile Robot Driving on Ship Deck)

  • 김선덕;박경민;왕승열
    • 해양환경안전학회지
    • /
    • 제28권7호
    • /
    • pp.1216-1221
    • /
    • 2022
  • 선박은 화물 운송의 효율을 증대시키기 위해 대형화되는 추세이다. 선박 대형화는 선박 작업자의 이동시간 증가, 업무 강도 증가 및 작업 효율 저하 등으로 이어진다. 작업 업무 강도 증가 등의 문제는 젊은 세대의 고강도 노동 기피 현상과 맞물러 젊은 세대의 노동력 유입을 감소시키고 있다. 또한 급속한 인구 노령화도 젊은 세대의 노동력 유입 감소와 복합적으로 작용하면서 해양산업 분야의 인력 부족 문제는 극심해지는 추세이다. 해양산업 분야는 인력 부족 문제를 극복하기 위해 지능형 생산설계 플랫폼, 스마트 생산 운영관리 시스템 등의 기술을 도입하고 있으며, 스마트 자율물류 시스템도 이러한 기술 중의 하나이다. 스마트 자율물류 시스템은 각종 물품들을 지능형 이동로봇을 활용하여 전달하는 기술로서 라이다, 카메라 등의 센서를 활용해 로봇 스스로 주행이 가능하도록 하는 것이다. 이에 본 논문에서는 이동로봇이 선박 갑판의 통행로를 감지하여 stop sign이 있는 곳까지 자율적으로 주행할 수 있는지를 확인하였다. 자율주행은 Nvidia의 End-to-end learning을 통해 학습한 데이터를 기반으로, 이동로봇에 장착된 카메라를 통해 선박 갑판의 통행로를 감지하여 수행하였다. 이동로봇의 정지는 SSD MobileNetV2를 이용하여 stop sign을 확인하여 수행하였다. 실험은 약 70m 거리의 선박 갑판 통행로를 이동로봇이 이탈 없이 주행 후 stop sign을 확인하여 정지하는지를 5회 반복 실험하였으며, 실험 결과 경로이탈 없이 주행하는 결과를 얻을 수 있었다. 이 결과를 적용한 스마트 자율물류 시스템이 산업현장에 적용된다면 작업자가 작업 시 안정성, 노동력 감소, 작업 효율이 향상될 것으로 사료된다.

실데이터 기반 능동 소나 신호 합성 방법론 (Real data-based active sonar signal synthesis method)

  • 김윤수;김주호;석종원;홍정표
    • 한국음향학회지
    • /
    • 제43권1호
    • /
    • pp.9-18
    • /
    • 2024
  • 최근 수중표적의 저소음화와 해상교통량의 증가로 인한 주변 소음의 증가로 능동 소나 시스템의 중요성이 증대되고 있다. 하지만 신호의 다중 경로를 통한 전파, 다양한 클러터와 주변 소음 및 잔향 등으로 인한 반향신호의 낮은 신호대잡음비는 능동 소나를 통한 수중 표적 식별을 어렵게 만든다. 최근 수중 표적 식별 시스템의 성능을 향상 시키기 위해 머신러닝 혹은 딥러닝과 같은 데이터 기반의 방법을 적용시키려는 시도가 있지만, 소나 데이터셋의 특성 상 훈련에 충분한 데이터를 모으는 것이 어렵다. 부족한 능동 소나 데이터를 보완하기 위해 수학적 모델링에 기반한 방법이 주로 활용되어오고 있다. 그러나 수학적 모델링에 기반한 방법론은 복잡한 수중 현상을 정확하게 모의하는 데에는 한계가 있다. 따라서 본 논문에서는 심층 신경망 기반의 소나 신호 합성 기법을 제안한다. 제안하는 방법은 인공지능 모델을 소나 신호 합성 분야에 적용하기 위해, 음성 합성 분야에서 주로 사용되는 타코트론 모델의 주요 모듈인 주의도 기반의 인코더 및 디코더를 소나 신호에 적절하게 수정하였다. 실제 해상 환경에 모의 표적기를 배치해 수집한 데이터셋을 사용하여 제안하는 모델을 훈련시킴으로써 보다 실제 신호와 유사한 신호를 합성해낼 수 있게 된다. 제안된 방법의 성능을 검증하기 위해, 합성된 음파 신호의 스펙트럼을 직접 분석을 진행하여 비교하였으며, 이를 바탕으로 오디오 품질 인지적 평가(Perceptual Quality of Audio Quality, PEAQ)인지적 성능 검사를 실시하여 총 4개의 서로 다른 환경에서 생성된 반사 신호들에 대해 원본과 비교해 그 차이가 최소 -2.3이내의 높은 성적을 보여주었다. 이는 본 논문에서 제안한 방법으로 생성한 능동 소나 신호가 보다 실제 신호에 근사한다는 것을 입증한다.

환경요인을 이용한 다층 퍼셉트론 기반 온실 내 기온 및 상대습도 예측 (Prediction of Air Temperature and Relative Humidity in Greenhouse via a Multilayer Perceptron Using Environmental Factors)

  • 최하영;문태원;정대호;손정익
    • 생물환경조절학회지
    • /
    • 제28권2호
    • /
    • pp.95-103
    • /
    • 2019
  • 온도와 상대습도는 작물 재배에 있어서 중요한 요소로써, 수량과 품질의 증대를 위해서는 적절히 제어 되어야 한다. 그리고 정확한 환경 제어를 위해서는 환경이 어떻게 변화할지 예측할 필요가 있다. 본 연구의 목적은 현시점의 환경 데이터를 이용한 다층 퍼셉트론(multilayer perceptrons, MLP)을 기반으로 미래 시점의 기온 및 상대습도를 예측하는 것이다. MLP 학습에 필요한 데이터는 어윈 망고(Mangifera indica cv. Irwin)을 재배하는 8연동 온실($1,032m^2$)에서 2016년 10월 1일부터 2018년 2월 28일까지 10분 간격으로 수집되었다. MLP는 온실내부 환경 데이터, 온실 외 기상 데이터, 온실 내 장치의 설정 및 작동 값을 사용하여 10~120분 후 기온 및 상대습도를 예측하기 위한 학습을 진행하였다. 사계절이 뚜렷한 우리나라의 계절에 따른 예측 정확도를 분석하기 위해서 테스트 데이터로 계절별로 3일간의 데이터를 사용했다. MLP는 기온의 경우 은닉층이 4개, 노드 수가 128개일 때($R^2=0.988$), 상대습도는 은닉층 4개, 노드 수 64개에서 가장 높은 정확도를 보였다($R^2=0.990$). MLP 특성상 예측 시점이 멀어질수록 정확도는 감소하였지만, 계절에 따른 환경 변화에 무관하게 기온과 상대습도를 적절히 예측하였다. 그러나 온실 내 환경 제어 요소 중 분무 관수처럼 특이적인 데이터의 경우, 학습 데이터 수가 적기 때문에 예측 정확도가 낮았다. 본 연구에서는 MLP의 최적화를 통해서 기온 및 상대습도를 적절히 예측하였지만 실험에 사용된 온실에만 국한되었다. 따라서 보다 일반화를 위해서 다양한 장소의 온실 데이터 이용과 이에 따른 신경망 구조의 변형이 필요하다.

비실험 자료로부터의 인과 추론: 핵심 개념과 최근 동향 (Causal inference from nonrandomized data: key concepts and recent trends)

  • 최영근;유동현
    • 응용통계연구
    • /
    • 제32권2호
    • /
    • pp.173-185
    • /
    • 2019
  • 과학적 연구에서 핵심적인 연구 주제 또는 가설은 대부분 인과적 질문(causal question)을 포함한다. 예를 들어, 전염병 예방을 위한 치료법의 효과 연구, 특정 정책의 시행으로 인한 효용(utility)의 평가에 대한 연구, 특정 사용자를 대상으로 노출된 광고의 종류에 따른 광고의 효과성에 대한 연구는 모두 인과 관계(causal relationship)의 추론이 요구된다. 이러한 인과 관계를 다루는 통계적 인과 추론(statistical causal inference)의 주요 관심사 중 하나는 모집단에 일종의 개입(정책 혹은 처치)을 적용한 후 개입의 효과를 정확하게 추정하는 것이다. 인과 추론은 임상실험과 정책결정에서 주로 이용되었으나, 이른바 빅데이터 시대의 도래로 가용한 관측자료가 폭발적으로 증가하였고 이로 인하여 인과 추론에 대한 잠재적 응용가치와 수요가 지속적으로 증가하고 있다. 하지만 가용한 대부분의 자료는 임의실험 기반의 자료와 달리 개입이 임의로 분배되지 않은 비실험 관측자료이다. 따라서, 본 논문은 비실험 관측자료로부터 개입의 효과를 추정하기 위한 인과 추론의 핵심 개념과 최근의 연구동향을 소개하고자 한다. 이를 위하여 본문에서는 먼저 개입의 효과를 Neyman-Rubin의 잠재 결과(potential outcome) 모형으로 나타내고, 개입의 효과를 추정하는 여러 접근법 중 특히 성향점수(propensity score) 기반 추정법과 회귀모형 기반 추정법을 중점적으로 소개한다. 최근 연구동향으로는 (1) 평균 효과 크기 추정을 넘어선 개인별 효과 크기의 추정, (2) 효과크기 추정에 있어서 자료 규모의 증대로 인한 차원의 저주가 야기하는 난제들과 이에 대한 해결방안들, (3) 복합적 인과관계를 반영하기 위한 Pearl의 구조적 인과 모형(structural causal model) 및 잠재 결과 모형과의 비교의 3가지 주제로 구분하여 소개한다.

한국 30~40대 실업률 예측을 위한 구글 검색 정보의 활용 (Application of Google Search Queries for Predicting the Unemployment Rate for Koreans in Their 30s and 40s)

  • 정재운;황진호
    • 디지털융복합연구
    • /
    • 제17권9호
    • /
    • pp.135-145
    • /
    • 2019
  • 장기불황으로 인해 한국 청년실업률이 수년간 10% 안팎의 높은 수준을 유지하고 있는 가운데, 주요 경제활동 인구인 30~40대의 실업률이 최근 상승세를 보이고 있다. 정부의 기존 청년 중심의 고용촉진 및 실업복지 정책을 30~40대를 포함한 다양한 연령층으로 확대 강화하기 위해서는 각 연령층에 대한 실업예측 모형 연구가 필요하다. 이에 본 연구에서는 한국 통계청 실업률 자료와 구글 검색어를 활용하여 한국 30~40대 연령층에 특화된 실업률 예측모형을 개발하고자 하였다. 실업률 자료와 계절성 자기회귀누적이동평균 모형을 활용하여 기초모형(Model 1)을 다중선형회귀 모형으로 추정하였으며, 개선된 모형을 구하고자 구글 검색 질의어 정보를 Model 1에 추가 활용하였다(Model 2). 그 결과, 30대와 40대 연령층 모두 구글 검색 질의어를 추가 활용한 Model 2가 Model 1보다 우수한 예측력을 보였다. 이는 웹 검색 질의어가 여전히 한국의 실업률 예측모형을 개선하는 데 유의미함을 의미한다. 본 연구는 실질적인 활용을 위해 추가적인 연구가 필요하지만, 연령대별 실업률 예측 연구에 기여할 것으로 판단된다.

음질, 운율, 발음 특징을 이용한 마비말장애 중증도 자동 분류 (Automatic severity classification of dysarthria using voice quality, prosody, and pronunciation features)

  • 여은정;김선희;정민화
    • 말소리와 음성과학
    • /
    • 제13권2호
    • /
    • pp.57-66
    • /
    • 2021
  • 본 논문은 말 명료도 기준의 마비말장애 중증도 자동 분류 문제에 초점을 둔다. 말 명료도는 호흡, 발성, 공명, 조음, 운율 등 다양한 말 기능 특징의 영향을 받는다. 그러나 대부분의 선행연구는 한 개의 말 기능 특징만을 중증도 자동분류에 사용하였다. 본 논문에서는 음성의 장애 특성을 효과적으로 포착하기 위해 마비말장애 중증도 자동 분류에서 음질, 운율, 발음의 다양한 말 기능 특징을 반영하고자 하였다. 음질은 jitter, shimmer, HNR, voice breaks 개수, voice breaks 정도로 구성된다. 운율은 발화 속도(전체 길이, 말 길이, 말 속도, 조음 속도), 음높이(F0 평균, 표준편차, 최솟값, 최댓값, 중간값, 25 사분위값, 75 사분위값), 그리고 리듬(% V, deltas, Varcos, rPVIs, nPVIs)을 포함한다. 발음에는 음소 정확도(자음 정확도, 모음 정확도, 전체 음소 정확도)와 모음 왜곡도[VSA(vowel space area), FCR (formant centralized ratio), VAI(vowel articulatory index), F2 비율]가 있다. 본 논문에서는 다양한 특징 조합을 사용하여 중증도 자동 분류를 시행하였다. 실험 결과, 음질, 운율, 발음 특징 세 가지 말 기능 특징 모두를 분류에 사용했을 때 F1-score 80.15%로 가장 높은 성능이 나타났다. 이는 마비말장애 중증도 자동 분류에는 음질, 운율, 발음 특징이 모두 함께 고려되어야 함을 시사한다.

가상화 시스템에서 Virtio와 SR-IOV 적용에 대한 단일 및 다중 네트워크 성능 평가 및 분석 (Performance Evaluation and Analysis on Single and Multi-Network Virtualization Systems with Virtio and SR-IOV)

  • 이재학;임종범;유헌창
    • 정보처리학회 논문지
    • /
    • 제13권2호
    • /
    • pp.48-59
    • /
    • 2024
  • 하드웨어 자체적으로 가상화를 지원하는 기능들이 추가됨에 따라 다양한 작업 유형을 가진 사용자 어플리케이션들이 가상화 시스템에서 효율적으로 운용되고 있다. 가상화 지원 기능 중 SR-IOV는 PCI 장치에 대한 직접 접근을 통해 하이퍼바이저 또는 운영체제 개입을 최소화하여 시스템 성능을 높이는 기술로 베어-메탈 시스템 대비 비교적 긴 I/O 경로 및 사용자 영역과 커널 영역에 대한 빈번한 컨텍스트 스위칭 등 가상화 계층의 추가로 낮은 네트워크 성능을 가진 가상화 시스템에서 네트워크 I/O 가속화를 실현하게 해준다. 이러한 성능적 이점을 이용하기 위해 가상머신 또는 컨테이너와 같은 인스턴스에 SR-IOV를 접목할 시 최적의 네트워크 I/O 성능을 도출할 수 있는 네트워크 자원 관리 정책이 활발히 연구되고 있다. 본 논문은 I/O 가속화를 실현하는 SR-IOV의 네트워크 성능을 1) 네트워크 지연 시간, 2) 네트워크 처리량, 3) 네트워크 공정성, 4) 성능간섭, 5) 다중 네트워크와 같은 측면으로 세밀한 성능 평가 및 분석을 Virtio와 비교하여 진행한다. 본 논문의 기여점은 다음과 같다. 첫째, 가상화 시스템에서 Virtio와 SR-IOV의 네트워크 I/O 과정을 명확히 설명했으며, 둘째, Virtio와 SR-IOV의 네트워크 성능을 다양한 성능 메트릭을 기반으로 분석하였다. 셋째, 가상머신 밀집도가 높은 환경에서 SR-IOV 네트워크에 대한 시스템 오버헤드 및 이에 대한 최적화 가능성을 실험으로 확인하였다. 본 논문의 실험 결과 및 분석들은 스마트 팩토리, 커넥티드-카, 딥러닝 추론 모델, 크라우드 소싱과 같은 네트워크 집약적인 서비스들을 운용하는 가상화 시스템에 대한 네트워크 자원 관리 정책에 활용될 것으로 기대된다.

하천 내 지표 피복 분류를 위한 Sentinel-2 영상 기반 랜덤 포레스트 기법의 적용성 연구 - 내성천을 사례로 - (Application study of random forest method based on Sentinel-2 imagery for surface cover classification in rivers - A case of Naeseong Stream -)

  • 안성기;이찬주;김용민;최훈
    • 한국수자원학회논문집
    • /
    • 제57권5호
    • /
    • pp.321-332
    • /
    • 2024
  • 하천 공간의 지표 피복 현황 파악은 하천 관리 및 홍수 재해 예방에 필수적이다. 기존 조사 방법은 전문가에 의한 식생 판독을 통한 식생도 작도 방법이나 식생지수를 활용하는 방법이 활용되어 왔으나, 역동적으로 변화하는 하천 환경을 반영하기에 한계가 있다. 이러한 배경에서 본 연구는 내성천을 대상으로 위성영상 자료를 활용한 랜덤 포레스트 기법을 활용하여 다수 연도의 하천 내 식생 분포를 파악하고, 적용성을 검토하였다. 원격탐사 자료 Sentinel-2 위성 영상을 사용하였으며, 지상 참값(ground truth)은 2016년 내성천 지표 피복 자료를 활용하였다. 랜덤 포레스트 머신러닝 알고리듬을 활용하여 미리 선정된 10개 샘플링 영역으로부터 분류군 별로 1,000개의 표본을 추출하여 훈련 및 검증하였으며, 민감도 분석, 연도별 지표 피복 분석, 정확도 분석을 통하여 적용성을 평가하였다. 연구 결과, 검증 자료 기반의 정확도는 85.1%로 나타났다. 트리 수, 샘플 수, 하천 구역에 대한 민감도 분석 결과, 각각 30개, 800개, 하류에서 효율성이 높았다. 지표 분류 유형은 6개 항목에서 높은 정확도를 보여 지표 피복 분류 결과가 실제 하천 환경을 잘 반영하는 것으로 나타났다. 정확도 분석 결과, 전체 샘플 중 14.9%의 경계오류와 내부오류를 확인하였으며, 지표 피복 분류 중 산발 식생과 초본 식생을 제외한 항목들은 높은 정확도를 보였다. 본 연구에서는 단일 하천을 대상으로 적용하였지만, 보다 정확하고 많은 자료의 구축을 위해서는 다수의 하천에 대해 지표 피복 분류 기법의 적용이 요구된다.

Node2vec 그래프 임베딩과 Light GBM 링크 예측을 활용한 식음료 산업의 수출 후보국가 탐색 연구 (A Study on Searching for Export Candidate Countries of the Korean Food and Beverage Industry Using Node2vec Graph Embedding and Light GBM Link Prediction)

  • 이재성;전승표;서진이
    • 지능정보연구
    • /
    • 제27권4호
    • /
    • pp.73-95
    • /
    • 2021
  • 본 연구는 Node2vec 그래프 임베딩 방법과 Light GBM 링크 예측을 활용해 우리나라 식음료 산업의 미개척 수출 후보국가를 탐색한다. Node2vec은 네트워크의 공통 이웃 개수 등을 기반으로 하는 기존의 링크 예측 방법에 비해 상대적으로 취약하다고 알려져 있던 네트워크의 구조적 등위성 표현의 한계를 개선한 방법이다. 따라서 해당 방법은 네트워크의 커뮤니티 탐지와 구조적 등위성 모두에서 우수한 성능을 나타내는 것으로 알려져 있다. 이에 본 연구는 이상의 방법을 우리나라 식음료 산업의 국제 무역거래 정보에 적용했다. 이를 통해 해당 산업의 글로벌 가치사슬 관계에서 우리나라의 광범위한 마진 다각화 효과를 창출하는데 기여하고자 한다. 본 연구의 결과를 통해 도출된 최적의 예측 모델은 0.95의 정밀도와 0.79의 재현율을 기록하며 0.86의 F1 score를 기록해 우수한 성능을 나타냈다. 이상의 모델을 통해 도출한 우리나라의 잠재적 수출 후보국가들의 결과는 추가 조사를 통해 대부분 적절하게 나타난 것을 알 수 있었다. 이상의 내용을 종합하여 본 연구는 Node2vec과 Light GBM을 응용한 링크 예측 방법의 실무적 활용성에 대해 시사할 수 있었다. 그리고 모델을 학습하며 링크 예측을 보다 잘 수행할 수 있는 가중치 업데이트 전략에 대해서도 유용한 시사점을 도출할 수 있었다. 한편, 본 연구는 그래프 임베딩 기반의 링크 예측 관련 연구에서 아직까지 많이 수행된 적 없는 무역거래에 이를 적용했기에 정책적 활용성도 갖고 있다. 본 연구의 결과는 최근 미중 무역갈등이나 일본 수출 규제 등과 같은 글로벌 가치사슬의 변화에 대한 빠른 대응을 지원하며 정책적 의사결정을 위한 도구로써 충분한 유용성이 있다고 생각한다.