• 제목/요약/키워드: Machine Learning(ml)

검색결과 302건 처리시간 0.023초

A Nature-inspired Multiple Kernel Extreme Learning Machine Model for Intrusion Detection

  • Shen, Yanping;Zheng, Kangfeng;Wu, Chunhua;Yang, Yixian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권2호
    • /
    • pp.702-723
    • /
    • 2020
  • The application of machine learning (ML) in intrusion detection has attracted much attention with the rapid growth of information security threat. As an efficient multi-label classifier, kernel extreme learning machine (KELM) has been gradually used in intrusion detection system. However, the performance of KELM heavily relies on the kernel selection. In this paper, a novel multiple kernel extreme learning machine (MKELM) model combining the ReliefF with nature-inspired methods is proposed for intrusion detection. The MKELM is designed to estimate whether the attack is carried out and the ReliefF is used as a preprocessor of MKELM to select appropriate features. In addition, the nature-inspired methods whose fitness functions are defined based on the kernel alignment are employed to build the optimal composite kernel in the MKELM. The KDD99, NSL and Kyoto datasets are used to evaluate the performance of the model. The experimental results indicate that the optimal composite kernel function can be determined by using any heuristic optimization method, including PSO, GA, GWO, BA and DE. Since the filter-based feature selection method is combined with the multiple kernel learning approach independent of the classifier, the proposed model can have a good performance while saving a lot of training time.

MIMO-OFDM 시스템에서 에너지 효율성을 위한 기계 학습 기반 적응형 전송 기술 및 Feature Space 연구 (Machine-Learning-Based Link Adaptation for Energy-Efficient MIMO-OFDM Systems)

  • 오명석;김기범;박현철
    • 한국전자파학회논문지
    • /
    • 제27권5호
    • /
    • pp.407-415
    • /
    • 2016
  • 무선 통신의 최근 동향을 살펴보면 에너지 효율적 전송의 중요성이 강조되고 있다. 본 논문은 multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM) 무선 시스템에서 에너지 효율성을 최대화하기 위해 기계학습 기술을 사용하는 적응형 전송을 고려한다. MIMO-OFDM 시스템의 채널 상태를 효과적으로 나타내기 위한 two- dimensional capacity(2D-CAP) feature space와 classification 기술을 통해 에너지 효율적인 적응형 전송을 수행하는 machine-learning-based bit and power adaptation(ML-BPA) 알고리즘을 제안한다. 모의 실험 결과를 통해 2D-CAP이 본 논문이 고려하는 무선 채널 상태를 정확하게 나타내며, 이를 통해 적응형 전송의 성능을 향상시킴을 확인하였다. 또한, ordered postprocessing signal-to-noise ratio(ordSNR)를 포함한 다른 feature space들과 직접적인 비교를 통해 2D-CAP이 전송 성능이나 복잡도 측면에서 뚜렷한 이득을 가짐을 확인하였다.

Lightweight Named Entity Extraction for Korean Short Message Service Text

  • Seon, Choong-Nyoung;Yoo, Jin-Hwan;Kim, Hark-Soo;Kim, Ji-Hwan;Seo, Jung-Yun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제5권3호
    • /
    • pp.560-574
    • /
    • 2011
  • In this paper, we propose a hybrid method of Machine Learning (ML) algorithm and a rule-based algorithm to implement a lightweight Named Entity (NE) extraction system for Korean SMS text. NE extraction from Korean SMS text is a challenging theme due to the resource limitation on a mobile phone, corruptions in input text, need for extension to include personal information stored in a mobile phone, and sparsity of training data. The proposed hybrid method retaining the advantages of statistical ML and rule-based algorithms provides fully-automated procedures for the combination of ML approaches and their correction rules using a threshold-based soft decision function. The proposed method is applied to Korean SMS texts to extract person's names as well as location names which are key information in personal appointment management system. Our proposed system achieved 80.53% in F-measure in this domain, superior to those of the conventional ML approaches.

Azure 클라우드 플랫폼의 가상서버 호스팅을 이용한 데이터 수집환경 및 분석에 관한 연구 (A study on data collection environment and analysis using virtual server hosting of Azure cloud platform)

  • 이재규;조인표;이상엽
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2020년도 제62차 하계학술대회논문집 28권2호
    • /
    • pp.329-330
    • /
    • 2020
  • 본 논문에서는 Azure 클라우드 플랫폼의 가상서버 호스팅을 이용해 데이터 수집 환경을 구축하고, Azure에서 제공하는 자동화된 기계학습(Automated Machine Learning, AutoML)을 기반으로 데이터 분석 방법에 관한 연구를 수행했다. 가상 서버 호스팅 환경에 LAMP(Linux, Apache, MySQL, PHP)를 설치하여 데이터 수집환경을 구축했으며, 수집된 데이터를 Azure AutoML에 적용하여 자동화된 기계학습을 수행했다. Azure AutoML은 소모적이고 반복적인 기계학습 모델 개발을 자동화하는 프로세스로써 기계학습 솔루션 구현하는데 시간과 자원(Resource)를 절약할 수 있다. 특히, AutoML은 수집된 데이터를 분류와 회귀 및 예측하는데 있어서 학습점수(Training Score)를 기반으로 보유한 데이터에 가장 적합한 기계학습 모델의 순위를 제공한다. 이는 데이터 분석에 필요한 기계학습 모델을 개발하는데 있어서 개발 초기 단계부터 코드를 설계하지 않아도 되며, 전체 기계학습 시스템을 개발 및 구현하기 전에 모델의 구성과 시스템을 설계해볼 수 있기 때문에 매우 효율적으로 활용될 수 있다. 본 논문에서는 NPU(Neural Processing Unit) 학습에 필요한 데이터 수집 환경에 관한 연구를 수행했으며, Azure AutoML을 기반으로 데이터 분류와 회귀 등 가장 효율적인 알고리즘 선정에 관한 연구를 수행했다.

  • PDF

베이지안 최적화를 이용한 암상 분류 모델의 하이퍼 파라미터 탐색 (Hyperparameter Search for Facies Classification with Bayesian Optimization)

  • 최용욱;윤대웅;최준환;변중무
    • 지구물리와물리탐사
    • /
    • 제23권3호
    • /
    • pp.157-167
    • /
    • 2020
  • 최근 인공지능 기술의 발전과 함께 물리탐사의 다양한 분야에서도 인공지능의 핵심 기술인 머신러닝의 활용도가 증가하고 있다. 또한 머신러닝 및 딥러닝을 활용한 연구는 이미지, 비디오, 음성, 자연어 등 다양한 태스크의 추론 정확도를 높이기 위해 복잡한 알고리즘들이 개발되고 있고, 더 나아가 자료의 특성, 알고리즘 구조 및 하이퍼 파라미터의 최적화를 위한 자동 머신러닝(AutoML) 분야로 그 폭을 넓혀가고 있다. 본 연구에서는 AutoML 분야 중에서도 하이퍼 파라미터(hyperparameter) 자동 탐색을 위한 베이지안 최적화 기술에 중점을 두었으며, 본 기술을 물리탐사 분야에서도 암상 분류(facies classification) 문제에 적용했다. Vincent field의 현장 물리검층 및 탄성파 자료를 이용하여 암상 및 공극유체를 분류하는 지도학습 기반 모델에 적용하였고, 랜덤 탐색 기법의 결과와 비교하여 베이지안 최적화 기반 예측 프레임워크의 효율성을 검증하였다.

광주광역시의 AI 특화분야를 위한 실용적인 접근 사례 제시 (Presenting Practical Approaches for AI-specialized Fields in Gwangju Metro-city)

  • 차병래;차윤석;박선;신병춘;김종원
    • 스마트미디어저널
    • /
    • 제10권1호
    • /
    • pp.55-62
    • /
    • 2021
  • 광주광역시의 3대 주력산업인 자동차 산업, 에너지 산업, 그리고 AI/헬스케어 산업 등에 응용 가능한 AI 활용 사례로 준지도 학습, 전이 학습, 그리고 연합 학습의 머신러닝을 적용하며, 더불어 주력산업을 위한 AI 서비스를 위한 ML 전략을 정립하였다. AI 서비스의 ML 전략을 기반으로 실용적 접근 사례들을 제시하고자 하며, 준지도 학습의 접근 사례는 자동차 영상 인식 기술에 활용하며, 전이 학습의 접근 사례는 헬스케어 분야의 당뇨병성 망막병증 검출에 활용하고자 하며, 마지막으로 연합 학습의 접근 사례는 전력 수요 예측에 활용하고자 한다. 이러한 접근 사례들을 싱글보드 Raspberry Pi, Jaetson Nano, Intel i-7 등의 하드웨어를 기반으로 성능 테스트를 진행함과 동시에 실용적인 접근 사례들의 유효성을 검증하였다.

경영 시뮬레이션 게임에서 PPO 알고리즘을 적용한 강화학습의 유용성에 관한 연구 (A Study about the Usefulness of Reinforcement Learning in Business Simulation Games using PPO Algorithm)

  • 양의홍;강신진;조성현
    • 한국게임학회 논문지
    • /
    • 제19권6호
    • /
    • pp.61-70
    • /
    • 2019
  • 본 논문에서는 경영 시뮬레이션 게임 분야에서 강화학습을 적용하여 게임 에이전트들이 자율적으로 주어진 목표를 달성하는지를 확인하고자 한다. 본 시스템에서는 Unity Machine Learning (ML) Agent 환경에서 PPO (Proximal Policy Optimization) 알고리즘을 적용하여 게임 에이전트가 목표를 달성하기 위해 자동으로 플레이 방법을 찾도록 설계하였다. 그 유용성을 확인하기 위하여 5가지의 게임 시나리오 시뮬레이션 실험을 수행하였다. 그 결과 게임 에이전트가 다양한 게임 내 환경 변수의 변화에도 학습을 통하여 목표를 달성한다는 것을 확인하였다.

머신러닝&딥러닝 모델을 활용한 댐 일유입량 예측시 융적설을 고려하기 위한 데이터 전처리에 대한 방법 연구 (Study on data preprocessing methods for considering snow accumulation and snow melt in dam inflow prediction using machine learning & deep learning models)

  • 조영식;정관수
    • 한국수자원학회논문집
    • /
    • 제57권1호
    • /
    • pp.35-44
    • /
    • 2024
  • 댐유입량 예측에 대하여 데이터 기반 머신러닝 및 딥러닝(Machine Learning & Deep Learning, ML&DL) 분석도구들이 공개되어 다양한 분야에서 ML&DL의 적용연구가 활발히 진행되고 있으며, 모델의 자체 성능향상 뿐만 아니라 모델의 특성을 고려한 데이터의 전처리도 댐유입량을 정확하게 예측하게 하는 중요한 모델성능 향상의 요소라고 할 수 있다. 특히 기존 강우자료는 적설량을 열선 설비를 통하여 녹여 강우량으로 환산되어 있으므로, 융적설에 따른 강우와 유입량의 상관관계를 왜곡하게 된다. 따라서 본연구에서는 소양강댐과 같이 융적설의 영향을 받는 댐유역에 대한 댐일유입량 예측시 겨울에 강설량이 적설이 되어 적게 유출되는 현상과, 봄에 융설로 인하여 무강우나 적은 비에도 많은 유출이 일어나는 물리적 현상을 ML&DL모델로 적용하기 위하여 필요한 강우 데이터의 전처리에 대한 연구를 수행 하였다. 강우계열, 유입량계열을 조합하여 3가지 머신러닝(SVM, RF, LGBM)과 2가지 딥러닝(LSTM, TCN) 모델을 구축하고, 최적 하이퍼파라메터 튜닝을 통하여 적합 모델을 적용하고 한 결과, NSE 0.842~0.894로 높은 수준의 예측성능을 나타내었다. 또한 융적설을 반영한 강우보정 데이터를 만들기 위하여 융적설 모의 알고리즘을 개발하고, 이를 통하여 산정된 보정강우를 머신러닝 및 딥러닝 모델에 적용한 결과 NSE 0.841~0.896 으로 융적설 적용전과 비슷한 높은 수준의 예측 성능을 나타내었으나, 융적설 기간에는 조정된 강우로 학습되어 예측되었을 때 실측유입량에 근접하는 모의결과를 나타내었다. 결론적으로, 융적설이 영향을 미치는 유역에서의 데이터 모델 적용시에는 입력자료 구축시 적설 및 융설이 물리적으로 타당한 강우-유출 반응에 적합하도록 전처리과정이 중요함을 밝혔다.

Prediction of Significant Wave Height in Korea Strait Using Machine Learning

  • Park, Sung Boo;Shin, Seong Yun;Jung, Kwang Hyo;Lee, Byung Gook
    • 한국해양공학회지
    • /
    • 제35권5호
    • /
    • pp.336-346
    • /
    • 2021
  • The prediction of wave conditions is crucial in the field of marine and ocean engineering. Hence, this study aims to predict the significant wave height through machine learning (ML), a soft computing method. The adopted metocean data, collected from 2012 to 2020, were obtained from the Korea Institute of Ocean Science and Technology. We adopted the feedforward neural network (FNN) and long-short term memory (LSTM) models to predict significant wave height. Input parameters for the input layer were selected by Pearson correlation coefficients. To obtain the optimized hyperparameter, we conducted a sensitivity study on the window size, node, layer, and activation function. Finally, the significant wave height was predicted using the FNN and LSTM models, by varying the three input parameters and three window sizes. Accordingly, FNN (W48) (i.e., FNN with window size 48) and LSTM (W48) (i.e., LSTM with window size 48) were superior outcomes. The most suitable model for predicting the significant wave height was FNN(W48) owing to its accuracy and calculation time. If the metocean data were further accumulated, the accuracy of the ML model would have improved, and it will be beneficial to predict added resistance by waves when conducting a sea trial test.

배전계획을 고려한 실데이터 및 기계학습 기반의 배전선로 부하예측 기법에 대한 연구 (Prediction of Electric Power on Distribution Line Using Machine Learning and Actual Data Considering Distribution Plan)

  • Kim, Junhyuk;Lee, Byung-Sung
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제7권1호
    • /
    • pp.171-177
    • /
    • 2021
  • In terms of distribution planning, accurate electric load prediction is one of the most important factors. The future load prediction has manually been performed by calculating the maximum electric load considering loads transfer/switching and multiplying it with the load increase rate. In here, the risk of human error is inherent and thus an automated maximum electric load forecasting system is required. Although there are many existing methods and techniques to predict future electric loads, such as regression analysis, many of them have limitations in reflecting the nonlinear characteristics of the electric load and the complexity due to Photovoltaics (PVs), Electric Vehicles (EVs), and etc. This study, therefore, proposes a method of predicting future electric loads on distribution lines by using Machine Learning (ML) method that can reflect the characteristics of these nonlinearities. In addition, predictive models were developed based on actual data collected at KEPCO's existing distribution lines and the adequacy of developed models was verified as well. Also, as the distribution planning has a direct bearing on the investment, and amount of investment has a direct bearing on the maximum electric load, various baseline such as maximum, lowest, median value that can assesses the adequacy and accuracy of proposed ML based electric load prediction methods were suggested.