DOI QR코드

DOI QR Code

Machine-Learning-Based Link Adaptation for Energy-Efficient MIMO-OFDM Systems

MIMO-OFDM 시스템에서 에너지 효율성을 위한 기계 학습 기반 적응형 전송 기술 및 Feature Space 연구

  • 오명석 (한국과학기술원 전기및전자공학부) ;
  • 김기범 (한국과학기술원 전기및전자공학부) ;
  • 박현철 (한국과학기술원 전기및전자공학부)
  • Received : 2015.10.02
  • Accepted : 2016.04.26
  • Published : 2016.06.07

Abstract

Recent wireless communication trends have emphasized the importance of energy-efficient transmission. In this paper, link adaptation with machine learning mechanism for maximum energy efficiency in multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM) wireless system is considered. For reflecting frequency-selective MIMO-OFDM channels, two-dimensional capacity(2D-CAP) feature space is proposed. In addition, machine-learning-based bit and power adaptation(ML-BPA) algorithm that performs classification-based link adaptation is presented. Simulation results show that 2D-CAP feature space can represent channel conditions accurately and bring noticeable improvement in link adaptation performance. Compared with other feature spaces, including ordered postprocessing signal-to-noise ratio(ordSNR) feature space, 2D-CAP has distinguished advantages in either efficiency performance or computational complexity.

무선 통신의 최근 동향을 살펴보면 에너지 효율적 전송의 중요성이 강조되고 있다. 본 논문은 multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM) 무선 시스템에서 에너지 효율성을 최대화하기 위해 기계학습 기술을 사용하는 적응형 전송을 고려한다. MIMO-OFDM 시스템의 채널 상태를 효과적으로 나타내기 위한 two- dimensional capacity(2D-CAP) feature space와 classification 기술을 통해 에너지 효율적인 적응형 전송을 수행하는 machine-learning-based bit and power adaptation(ML-BPA) 알고리즘을 제안한다. 모의 실험 결과를 통해 2D-CAP이 본 논문이 고려하는 무선 채널 상태를 정확하게 나타내며, 이를 통해 적응형 전송의 성능을 향상시킴을 확인하였다. 또한, ordered postprocessing signal-to-noise ratio(ordSNR)를 포함한 다른 feature space들과 직접적인 비교를 통해 2D-CAP이 전송 성능이나 복잡도 측면에서 뚜렷한 이득을 가짐을 확인하였다.

Keywords

References

  1. T. L. Jensen, S. Kant, J. Wehinger, and B. H. Fleury, "Fast link adaptation for MIMO OFDM", IEEE Trans. Veh. Tech., vol. 59, pp. 3766-3778, Oct. 2010. https://doi.org/10.1109/TVT.2010.2053727
  2. C. Shin, H. Kim, K. J. Kim, and H. Park, "High-throughput low-complexity link adaptation for MIMO BICOFDM systems", IEEE Trans. Commun., vol. 59, pp. 1078-1088, Apr. 2011. https://doi.org/10.1109/TCOMM.2011.012711.100141
  3. G. P. Fettweis, E. Zimmermann, "ICT energy consumption-trens and challenges", Proc. WPMC SIGCOMM, p. 6, Sep. 2008.
  4. G. Miao, N. Himayat, and G. Y. Li, "Energy-efficient link adaptation in frequency-selective channels", IEEE Trans. Commun., vol. 58, pp. 545-554, Feb. 2010. https://doi.org/10.1109/TCOMM.2010.02.080587
  5. E. Eraslan, B. Daneshrad, "Practical energy efficient link adaptation for MIMO-OFDM systems", IEEE 2012 WCNC, pp. 280-485, 2012.
  6. L. Chen, Y. Yang, X. Chen, and G. Wei, "Energy-efficient link adaptation on Rayleigh fading channel for OSTBC MIMO system with imperfect CSIT", IEEE Trans. on Veh. Tech., vol. 62, no. 4, pp. 1577-1585, May 2013. https://doi.org/10.1109/TVT.2012.2234155
  7. X. Ge, X. Huang, Y. Wang, M. Chen, Q. Li, T. Han, and C. -X. Wang, "Energy-efficiency optimization for MIMOOFDM mobile multimedia communication systems with QoS constraints", IEEE Trans. Veh. Tech., vol. 63, no. 5, pp. 2127-2138, June 2014. https://doi.org/10.1109/TVT.2014.2310773
  8. B. Razavi, RF Microelectronics, New Prentice Hall Inc., 1998.
  9. R. C. Daniels, C. M. Caramanis, and R. W. Heath, "Adaptation in convolutionally coded MIMO-OFDM wireless systems through supervised learning and SNR ordering", IEEE Trans. Veh. Tech., vol. 59, pp. 114-126, Jan. 2010. https://doi.org/10.1109/TVT.2009.2029693
  10. S. Yun, C. M. Caramanis, "Reinforcement learning for link adaptation in MIMO-OFDM wireless systems", Proc. IEEE GLOBECOM, pp. 1-5, Dec. 2010.
  11. N. Mastronarde, M. Schaar, "Fast reinforcement learning for energy-efficient wireless communication", IEEE Trans. Signal Processing, vol. 59, no. 12, pp. 6262-6266, Dec. 2011. https://doi.org/10.1109/TSP.2011.2165211
  12. Y. -S. Choi, S. Alamouti, "A pragmatic PHY abstraction technique for link adaptation and MIMO switching", IEEE J. Sel. Areas Commun., vol. 26, no. 6, pp. 960-971, Aug. 2008. https://doi.org/10.1109/JSAC.2008.080812
  13. Y. Wu, S. Verdu, "The impact of constellation cardinality on Gaussian channel capacity", Proc. Allerton Conf. Commun., Control & Computing, Sep. 2010.
  14. S. T. Chung, A. J. Goldsmith, "Degrees of freedom in adaptive modulation: a unified view", IEEE Trans. Commun., vol. 49, pp. 1561-1571, Sep. 2001. https://doi.org/10.1109/26.950343
  15. T. M. Cover, P. E. Hart, "Nearest neighbor pattern classification", IEEE Trans. Inf. Theory., vol. 13. pp. 21-27, Jan. 1967. https://doi.org/10.1109/TIT.1967.1053964
  16. IEEE 802.11n Working Group, part 11 standard edition Wireless LAN Medium Access Control(MAC) and Physical Layer(PHY) Specifications - Draft 5.0: Enhancements for Higher Throughput, 2007.