• Title/Summary/Keyword: Machine Learing

Search Result 9, Processing Time 0.027 seconds

Hybrid Algorithm for Efficient learing of Regression Support Vector Machine (회귀용 Support Vector Machine의 효율적인 학습을 위한 조합형 알고리즘)

  • 조용현;박창환;박용수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.93-96
    • /
    • 2000
  • 본 논문에서는 SVM의 학습성 개선을 위해 모멘트와 kernel-adatron 기법이 조합된 하이브리드 학습알고리즘을 제안하였다. 제안된 학습알고리즘은 SVM의 학습기법인 기울기상승법에서 발생하는 최적해로의 수렴에 따른 발진을 억제하여 그 수렴속도를 좀 더 개선시키는 모멘트의 장점과 비선형 특징공간에서의 동작과 구현의 용이성을 가진 kernel-adatron 알고리즘의 장점을 그대로 살리는 것이다. 제안된 알고리즘을 비선형 함수 회귀에 적용해 본 결과 학습속도에 있어서 QP와 기존의 kernel-adatron 알고리즘보다 더 우수한 성능이 있음을 확인하였다

  • PDF

Machine-Part Cell Formation by Competitive Learning Neural Network (경쟁 학습 신경회로망을 이용한 기계-부품군 형성에 관한 연구)

  • 이성도;노상도;이교일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.432-437
    • /
    • 1997
  • In this paper, Fuzzy ART which is one of the competitive learing neural networks is applied to machine-part cell formation problem. A large matrix and varios types of machine-part incidence matrices, especially including bottle-neck machines, bottle-neck parts, parts shared by several cells, and machines shared by several cells are used to test the performannce of Fuzzy ART neural network as a cell formation algorithm. The result shows Fuzzy ART neral network can be efficiently applied to machine-part cell formation problem which are large, and/or have much imperfection as exceptions, bottle-neck machines, and bottle-neck parts.

  • PDF

Effective E-Learning Practices by Machine Learning and Artificial Intelligence

  • Arshi Naim;Sahar Mohammed Alshawaf
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.209-214
    • /
    • 2024
  • This is an extended research paper focusing on the applications of Machine Learing and Artificial Intelligence in virtual learning environment. The world is moving at a fast pace having the application of Machine Learning (ML) and Artificial Intelligence (AI) in all the major disciplines and the educational sector is also not untouched by its impact especially in an online learning environment. This paper attempts to elaborate on the benefits of ML and AI in E-Learning (EL) in general and explain how King Khalid University (KKU) EL Deanship is making the best of ML and AI in its practices. Also, researchers have focused on the future of ML and AI in any academic program. This research is descriptive in nature; results are based on qualitative analysis done through tools and techniques of EL applied in KKU as an example but the same modus operandi can be implemented by any institution in its EL platform. KKU is using Learning Management Services (LMS) for providing online learning practices and Blackboard (BB) for sharing online learning resources, therefore these tools are considered by the researchers for explaining the results of ML and AI.

A Study on the AI Model for Prediction of Demand for Cold Chain Distribution of Drugs (의약품 콜드체인 유통 수요 예측을 위한 AI 모델에 관한 연구)

  • Hee-young Kim;Gi-hwan Ryu;Jin Cai ;Hyeon-kon Son
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.763-768
    • /
    • 2023
  • In this paper, the existing statistical method (ARIMA) and machine learning method (Informer) were developed and compared to predict the distribution volume of pharmaceuticals. It was found that a machine learning-based model is advantageous for daily data prediction, and it is effective to use ARIMA for monthly prediction and switch to Informer as the data increases. The prediction error rate (RMSE) was reduced by 26.6% compared to the previous method, and the prediction accuracy was improved by 13%, resulting in a result of 86.2%. Through this thesis, we find that there is an advantage of obtaining the best results by ensembleing statistical methods and machine learning methods. In addition, machine learning-based AI models can derive the best results through deep learning operations even in irregular situations, and after commercialization, performance is expected to improve as the amount of data increases.

An early fouling alarm method for a ceramic microfiltration pilot plant using machine learning (머신러닝을 활용한 세라믹 정밀여과 파일럿 플랜트의 파울링 조기 경보 방법)

  • Dohyun Tak;Dongkeon Kim;Jongmin Jeon;Suhan Kim
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.5
    • /
    • pp.271-279
    • /
    • 2023
  • Fouling is an inevitable problem in membrane water treatment plant. It can be measured by trans-membrane pressure (TMP) in the constant flux operation, and chemical cleaning is carried out when TMP reaches a critical value. An early fouilng alarm is defined as warning the critical TMP value appearance in advance. The alarming method was developed using one of machine learning algorithms, decision tree, and applied to a ceramic microfiltration (MF) pilot plant. First, the decision tree model that classifies the normal/abnormal state of the filtration cycle of the ceramic MF pilot plant was developed and it was then used to make the early fouling alarm method. The accuracy of the classification model was up to 96.2% and the time for the early warning was when abnormal cycles occurred three times in a row. The early fouling alram can expect reaching a limit TMP in advance (e.g., 15-174 hours). By adopting TMP increasing rate and backwash efficiency as machine learning variables, the model accuracy and the reliability of the early fouling alarm method were increased, respectively.

One-stop Platform for Verification of ICT-based environmental monitoring sensor data (ICT 기반 환경모니터링 센서 데이터 검증을 위한 원스탑 플랫폼)

  • Chae, Minah;Cho, Jae Hyuk
    • Journal of Platform Technology
    • /
    • v.9 no.1
    • /
    • pp.32-39
    • /
    • 2021
  • Existing environmental measuring devices mainly focus on electromagnetic wave and eco-friendly product certification and durability test, and sensor reliability verification and verification of measurement data are conducted mainly through sensor performance evaluation through type approval and registration, acceptance test, initial calibration, and periodic test. This platform has established an ICT-based environmental monitoring sensor reliability verification system that supports not only performance evaluation for each target sensor, but also a verification system for sensor data reliability. A sensor board to collect sensor data for environmental information was produced, and a sensor and data reliability evaluation and verification service system was standardized. In addition, to evaluate and verify the reliability of sensor data based on ICT, a sensor data platform monitoring prototype using LoRa communication was produced, and the test was conducted in smart cities. To analyze the data received through the system, an optimization algorithm was developed using machine learning. Through this, a sensor big data analysis system is established for reliability verification, and the foundation for an integrated evaluation and verification system is provide.

Implementation of Unsupervised Nonlinear Classifier with Binary Harmony Search Algorithm (Binary Harmony Search 알고리즘을 이용한 Unsupervised Nonlinear Classifier 구현)

  • Lee, Tae-Ju;Park, Seung-Min;Ko, Kwang-Eun;Sung, Won-Ki;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.4
    • /
    • pp.354-359
    • /
    • 2013
  • In this paper, we suggested the method for implementation of unsupervised nonlinear classification using Binary Harmony Search (BHS) algorithm, which is known as a optimization algorithm. Various algorithms have been suggested for classification of feature vectors from the process of machine learning for pattern recognition or EEG signal analysis processing. Supervised learning based support vector machine or fuzzy c-mean (FCM) based on unsupervised learning have been used for classification in the field. However, conventional methods were hard to apply nonlinear dataset classification or required prior information for supervised learning. We solved this problems with proposed classification method using heuristic approach which took the minimal Euclidean distance between vectors, then we assumed them as same class and the others were another class. For the comparison, we used FCM, self-organizing map (SOM) based on artificial neural network (ANN). KEEL machine learning datset was used for simulation. We concluded that proposed method was superior than other algorithms.

Prediction of Beach Profile Change Using Machine Learning Technique (머신러닝을 이용한 해빈단면 변화 예측)

  • Shim, Kyu Tae;Cho, Byung Sun;Kim, Kyu Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.5
    • /
    • pp.639-650
    • /
    • 2022
  • In areas where large-scale sediment transport occurs, it is important to apply appropriate countermeasure method because the phenomenon tends to accelerate by time duration. Among the various countermeasure methods applied so far, beach nourishment needs to be reviewed as an erosion prevention measure because the erosion pattern is mitigated and environmentally friendly depending on the particle size. In the case of beach nourishment. a detailed review is required to determine the size, range, etc., of an appropriate particle diameter. In this study, we investigated the characteristics of the related topographic change using the change in the particle size of nourishment materials, the application of partial area, and the condition under the coexistence of waves and wind as variables because those factors are hard to be analyzed and interpreted within results and limitation of that the existing numerical models are not able to calculate and result out so that it is required that phenomenon or efforts are reviewed at the same time through physical model experiments, field monitoring and etc. So we attempt to reproduce the tendency of beach erosion and deposition and predict possible phenomena in the future using machine learning techniques for phenomena that it is not able to be interpreted by numerical models. we used the hydraulic experiment results for the training data, and the accuracy of the prediction results according to the change in the training method was simultaneously analyzed. As a result of the study it was found that topographic changes using machine learning tended to be similar to those of previous studies in short-term predictions, but we also found differences in the formation of scour and sandbars.

Estimation of urban drinking water consumption patterns based on smart water grid monitoring data by k-means clustering in Vietnam (k-means 군집화 기법을 이용한 베트남 스마트워터그리드 계측 데이터 기반 도시 물 사용 패턴 추정)

  • Koo, Kang Min;Han, Kuk Heon;Lee, Gyumin;Jun, Kyung Soo;Yum, Kyung Taek
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.419-419
    • /
    • 2021
  • 수자원 관리 패러다임은 공급 위주에서 수요관리로 전환되고 있다. 가용한 수자원은 한정적이나 급속한 인구증가와 도시화로 인한 물 수요의 증가로 수요관리의 효율성이 중시되고 있기 때문이다. 기존 상수도시스템은 노후화로 가동효율이 점차 낮아지고 있으며, 인력으로 월 또는 격월로 소비자의 물 사용량을 검침해 실시간 관리가 불가능하여 수요와 공급의 불균형을 초래한다. 이러한 문제를 해결할 대안으로 IT 기술과 전통적인 물관리 기술을 접목한 Smart Water Grid는 양방향 통신장치를 이용해 실시간으로 소비자의 물 사용량을 모니터링한다. 물 사용 특성을 잘 파악하면 보다 정확한 물 수요 예측이 가능하다. 특히 소비자들의 시간별, 평일, 주말, 그리고 주별 물 사용 특성을 파악하면 미래 물 수요 예측에 도움이 된다. 예측된 물 수요량에 따라 물 공급 배분 계획을 수립하여 운영 효율성을 높일 수 있다. 물 수요예측 방법 중 k-mean 군집분석은 시간별 물 사용량을 이용해 서로 유사한 여러 개의 부분집합으로 할당하여 분류하는 Machine learing 방법으로 물 사용의 유사성을 파악할 수 있다. SWG 연구단은 2019년 Vietnam Hai Duong province에 SWG Pilot plant를 구축하고 27개의 Smart water meter를 설치하여 운영하고 있다. 이에 본 연구에서는 소비자의 물 사용 특성을 분석하기 위해 27개 SWM로부터 수신된 2019년 11월 14일부터 2020년 12월 3일까지 1시간 단위의 물 사용량 데이터를 수집하였다. 그리고 k-mean 군집 방법을 이용해 시간별, 평일, 주말, 그리고 주별 물 사용 특성을 분석하였다. 이 때 최적의 군집 개수 결정을 위해 Elbow 방법을 적용하였다. 분석 결과 각 소비자의 물 사용량 특성에 따라 평균 물 수요패턴 추정이 가능하며, 향후 물 수요 예측에 도움이 될 것으로 사료된다.

  • PDF