Estimation of urban drinking water consumption patterns based on smart water grid monitoring data by k-means clustering in Vietnam

k-means 군집화 기법을 이용한 베트남 스마트워터그리드 계측 데이터 기반 도시 물 사용 패턴 추정

  • 구강민 (성균관대학교 수자원전문대학원 수자원학과) ;
  • 한국헌 (성균관대학교 SWG O&M 연구단) ;
  • 이규민 (성균관대학교 건설환경연구소) ;
  • 전경수 (성균관대학교 수자원전문대학원 수자원학과) ;
  • 염경택 (성균관대학교 수자원전문대학원 수자원학과)
  • 발행 : 2021.06.03

초록

수자원 관리 패러다임은 공급 위주에서 수요관리로 전환되고 있다. 가용한 수자원은 한정적이나 급속한 인구증가와 도시화로 인한 물 수요의 증가로 수요관리의 효율성이 중시되고 있기 때문이다. 기존 상수도시스템은 노후화로 가동효율이 점차 낮아지고 있으며, 인력으로 월 또는 격월로 소비자의 물 사용량을 검침해 실시간 관리가 불가능하여 수요와 공급의 불균형을 초래한다. 이러한 문제를 해결할 대안으로 IT 기술과 전통적인 물관리 기술을 접목한 Smart Water Grid는 양방향 통신장치를 이용해 실시간으로 소비자의 물 사용량을 모니터링한다. 물 사용 특성을 잘 파악하면 보다 정확한 물 수요 예측이 가능하다. 특히 소비자들의 시간별, 평일, 주말, 그리고 주별 물 사용 특성을 파악하면 미래 물 수요 예측에 도움이 된다. 예측된 물 수요량에 따라 물 공급 배분 계획을 수립하여 운영 효율성을 높일 수 있다. 물 수요예측 방법 중 k-mean 군집분석은 시간별 물 사용량을 이용해 서로 유사한 여러 개의 부분집합으로 할당하여 분류하는 Machine learing 방법으로 물 사용의 유사성을 파악할 수 있다. SWG 연구단은 2019년 Vietnam Hai Duong province에 SWG Pilot plant를 구축하고 27개의 Smart water meter를 설치하여 운영하고 있다. 이에 본 연구에서는 소비자의 물 사용 특성을 분석하기 위해 27개 SWM로부터 수신된 2019년 11월 14일부터 2020년 12월 3일까지 1시간 단위의 물 사용량 데이터를 수집하였다. 그리고 k-mean 군집 방법을 이용해 시간별, 평일, 주말, 그리고 주별 물 사용 특성을 분석하였다. 이 때 최적의 군집 개수 결정을 위해 Elbow 방법을 적용하였다. 분석 결과 각 소비자의 물 사용량 특성에 따라 평균 물 수요패턴 추정이 가능하며, 향후 물 수요 예측에 도움이 될 것으로 사료된다.

키워드

과제정보

본 연구는 한국수자원공사(K-water) 개방형 R&D 연구사업의 연구비 지원 (A-C-002) 및 한국연구재단 기본연구사업의 연구비 지원(NRF-2018R1D1A1B07049352)에 의해 수행되었습니다.