• Title/Summary/Keyword: Machine Failure

Search Result 743, Processing Time 0.024 seconds

Effect of modeling liquid on the shear-bond strength of zirconia core - porcelain veneer (도재 전용액이 지르코니아 코어-도재 비니어의 전단결합강도에 미치는 영향)

  • Choi, Byung-Hwan;Kim, Im-Sun
    • Journal of Technologic Dentistry
    • /
    • v.36 no.2
    • /
    • pp.83-89
    • /
    • 2014
  • Purpose: This study is to evaluate the effect of modeling liquid on the shear-bond strength between zirconia core and veneering ceramic. Methods: Disk-shaped (diameter: 12.0mm; height: 3.0mm) zirconia were randomly divided into six groups according to the surface conditioning method and whether modeling liquid is used or not to be applied (N=60, n=10 per group): group 1-control group with distilled water(ZD); group 2-control group with modeling liquid(ZM); group 3-airborne particle abrasion with $110-{\mu}m$ $Al_2O_3$(AD) with distilled water; group 4-airborne particle abrasion with $110-{\mu}m$ $Al_2O_3$ with modeling liquid(AM); group 5-liner with distilled water(LD); group $6{\pounds}{\neq}liner$ with modeling liquid(LM). Contact angles were determined by the sessile drop method at room temperature using a contact angle measurement apparatus. The specimens were prepared using dentin veneering ceramics, veneered, 3mm high and 2.8mm in diameter, over the cores. The shear bond strength test was performed in a Shear bond test machine. Load was applied at a cross-head speed of 0.50mm/min until failure. The fractured zirconia surfaces were evaluated by using stereomicroscope (${\times}30$). Collected data were analyzed using SPSS(Statistical Package for Social Sciences) Win 12.0 statistics program. Results: ZD showed the highest contact angle($50.6{\pm}5.4^{\circ}$) and LD showed the lowest value($6.7{\pm}1.3^{\circ}$). Control groups and zirconia liner groups were significantly higher contact angle than liner groups(p<0.05). LD was the highest shear bond strength($43.9{\pm}3.8MPa$) and ZD was the lowest shear bond strength($24.8{\pm}4.9MPa$). Shear bond strengths of control groups and contact angle of liner groups were not significantly different((p>0.05). Liner groups presented adhesive failures. The others groups showed cohesive and adhesive failures. Conclusion: Modeling liquid groups showed lower contact angles and lower shear bond strength compared to those of distilled water groups.

A Quantitative Analysis of ΔK Conversion Method for the Retardation Behavior of Fatigue Crack Growth in Varying Thickness of Al 2024-T3 Sheet Alloy (판재 Al 2024-T3 합금재료에서 나타나는 두께별 피로균열진전지연거동에 관한 ΔK환산법의 정량적분)

  • Kim, Seung-Gwon;Lee, Ouk-Sub
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1415-1422
    • /
    • 2011
  • Sheet aluminum alloys used in manufacturing of machine structures for transportation show the difference of crack growth speed depending on thickness under the constant fatigue stress condition. The referred thickness effect is a major fatigue failure property of sheet aluminum alloys. In this work, we identified the thickness effect in fatigue test of thick plate and thin plate of Al 2024-T3 alloy under the constant fatigue stress condition, and presented the thickness effect to a correlative equation, $U_{i}^{equ}=f(R_t)$ which is determined by the shape factor, thickness ratio, $R_t$ and the loading factor, equivalent effective stress intensity ratio depending on thickness, $U_{i}^{equ}$. And we analyzed quantitatively the crack growth retardation behavior in thin plate compared to thick plate by the thickness effect using ${\Delta}K$ conversion method. We obtained such values as decrement of thickness(DoT), decrement of stress intensity factor range, ${\Delta}K$ (DoS) and identified the relation between them to present the nature of thickness effect in this work.

Evaluation of Flexural Properties of Indirect Gum-Shade Composite Resin for Esthetic Improvement (심미성 향상을 위한 간접수복용 Gum-Shade 복합레진의 굽힘 특성 평가)

  • Im, Yong-Woon;Hwang, Seong-Sig
    • Journal of dental hygiene science
    • /
    • v.15 no.4
    • /
    • pp.407-412
    • /
    • 2015
  • This study investigated flexural properties of indirect Gum-shade composite resins for esthetic improvement. The material utilized in this study was Crea.lign, Twiny flow and Twiny paste (TP). Ten specimens were fabricated with a dimension of $25{\times}2{\times}2mm$ according to the ISO 4049. After fabrications, specimens were stored in the distilled water for 24 hours at the temperature of $37^{\circ}C$. Three-point bending test was performed in universal testing machine (Instron 3344; Instron, USA) at a crosshead speed of 1 mm/min until the failure occurred. TP exhibited a higher flexural strength (FS) and flexural modulus (FM) compared to the flowable materials. There were significant differences among the three materials in FS and FM. However, there was no significant difference in work of fracture (WOF) in all tested materials (p>0.05). In Weibull analysis, TP showed the greatest Weibull modulus which means a higher reliability of the materials. Also, Gum-shade composite resins revealed a strong correlation in all flexural properties. There was a positive correlation in FS-FM ($r^2=0.99$) and a negative correlation between FS-WOF and FM-WOF ($r^2>0.97$). Therefore, this confirmed that flexural property was important for mechanical behavior evaluation and useful information. To addition, this improved among mechanical properties correlation of materials as important factor.

Influence of Water Infiltration and Flexural Strength Change with Glazing Treatment of Dental Porcelain (치과도재의 Glazing 여부에 따른 수분침투 정도와 굽힘강도에 미치는 영향)

  • Lee, Ju-Hee;Lee, Chae-Hyun;Song, Jeong-Hwan
    • Journal of dental hygiene science
    • /
    • v.17 no.4
    • /
    • pp.358-367
    • /
    • 2017
  • The purpose of this study was to evaluate the influence of water infiltration and flexural strength changes in dental porcelain with glazing treatment. The block specimens were prepared as experimental materials, using feldspar type commercial dental porcelain; then, these were fired at $940^{\circ}C$ for 1 minute. The fired specimens were polished with a dimension of $40{\times}5.5{\times}5mm$. The specimens were distributed to two experimental groups: with and without glazing treatment specimens (n=5), and they were immersed in a solution of pH 7 for 3, 7, and 20 days at $40^{\circ}C$ after fabrication. To evaluate the flexural strength changes with water infiltration treatment in specimens with and without glazing, the 3-point flexural test was performed, using a universal testing machine until failure occurred. Starting powder and fired specimens consisted of amorphous and leucite crystalline phase. The Vickers hardness of fired specimens was more than 1.6 times higher than that of the enamel of natural teeth. According to porosimeter results, the specimens without glazing treatment exhibited a porosity of about 14.7%, whereas the glazed specimens exhibited the lowest porosity at about 1.1%. The average flexural strength of glazed specimens was higher than the flexural strength of specimens without glazing treatment (p<0.05). The flexural strength of all specimens with and without glazing treatment deteriorated with accelerated aging in the solution. In addition, significant differences between these two treatment groups were observed in all of the specimens treated at various water infiltration periods (p<0.05). The exposure of internal pores and micro-cracks in the surface due to polishing of the fired specimens influenced mechanical behaviors. Especially, the flexural strength in specimens without glazing treatment has shown significant degradation with the infiltration of water. Therefore, this study suggests that glazing processes can improve mechanical properties of dental porcelain.

A Study on the Structural Performance of Hybrid Studs Subjected to Compression and Torsion (압축과 비틂을 동시에 받는 복합스터드의 구조적 성능에 관한 연구)

  • Jung, Yun Jin;Kwon, Young Bong;Kwak, Myong Keun;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.543-551
    • /
    • 2006
  • Cold-formed steel studs that are being used as load-bearing members of wall panels for steel houses have a problem with their insulation due to the heat bridging of their web. Some additional thermal insulating materials should be used. To solve this problem, the new-concept hybrid stud, which consists of a galvanized steel sheet (t = 1.0 m - 12.0 m) and a GFRP panel (t = 4.0-6.0 mm), has recently been developed. An investigation on the structural behavior and the strength capacity of this new hybrid stud has been conducted so that it can be used in load-bearing wall panels of residential buildings. This paper describes the axial compression-torsion test results of the hybrid studs under both axial compression and torsion using ATTM. The main factors of the test were the stud length, the magnitude of the initial compressive force, and the loading method of the monotonic or cyclic loading. The torsion was applied increasingly while the initial compression was kept constant to the failure of the hybrid section. The advanced analysis results obtained form the finite element procedure that considered the material properties of the high-strength galvanized steel and the GFRP were compared with the test results for verification.

Effect of graphene oxide on mechanical characteristics of polyurethane foam (산화그래핀이 폴리우레탄 폼 기계적 강도에 미치는 영향)

  • Kim, Jong-Min;Kim, Jeong-Hyeon;Choe, Young-Rak;Park, Sung Kyun;Park, Kang Hyun;Lee, Jae-Myung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.493-498
    • /
    • 2016
  • In the present study, graphene oxide based polyurethane foams were manufactured as a part of the development process of mechanically strengthened polyurethane foam insulation material. This material is used in a liquefied natural gas carrier cargo containment system. The temperature of the containment system is $-163^{\circ}C$. First, graphene oxide was synthesized using the Hummers' method, and it was supplemented into polyol-isocyanate reagent by considering a different amount of graphene oxide weight percent. Then, a bulk form of graphene-oxide-polyurethane foam was manufactured. In order to investigate the cell stability of the graphene-oxide-polyurethane foam, its microstructural morphology was observed, and the effect of graphene oxide on microstructure of the polyurethane foam was investigated. In addition, the compressive strength of graphene-oxide-polyurethane foam was measured at ambient and cryogenic temperatures. The cryogenic tests were conducted in a cryogenic chamber equipped with universal testing machine to investigate mechanical and failure characteristics of the graphene-oxide-polyurethane foam. The results revealed that the additions of graphene oxide enhanced the mechanical characteristics of polyurethane foam. However, cell stability and mechanical strength of graphene-oxide-polyurethane foam decreased as the weight percent of graphene oxide was increased.

THE EFFECT OF PLASMA-TREATED POLYETHYLENE FIBER ON THE FLEXURAL STRENGTH OF COMPOSITE RESIN IN VARIOUS APPLIED PORTIONS (플라스마 처리된 폴리에틸렌 섬유의 적용 부위가 복합 레진의 굴곡 강도에 미치는 영향)

  • Oh, Yong-Jin;Oh, Nam-Shik;Lee, Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.2
    • /
    • pp.401-412
    • /
    • 1997
  • There has been many researches aimed at reinforcing the strength of resin, and these have led to the development and use of numerous materials in recent years. A case in point, is the recent development of plasma-treated polyethylene fiber which has been used mainly in fixed provisional restoration to reduce the incidence of fractures. This study aims at assessing whether plasma-treated polyethylene fiber as applied to composite resin is effective in increasing the flexural strength and how applied portions affect this. Twenty-four applied and eight unapplied composite resin bars were fabricated. Twenty-four applied specimens were divided into three groups. Plasma treated polyethylene fiber was applied to the groups each with different portions of composite resin. In the first group, plasma-treated polyethylene fiber was not applied. In the second group, fiber was applied to the compression side of composite resin. Fiber was applied to the tension side in the third group, while fiber was embedded in the tension side of the composite resin in the fourth group. Each specimen was tested by use of a three-point bending strength test with an instron testing machine, and the flexural strength was calculated. The following results were obtained. : 1. Under the conditions of this study, the third and fourth groups demonstrated a statistically greater flexural strength compared to the first and second groups. 2. But there was no statistically significant difference, not only between the first group and the second group, but also between the third group and the fourth group. Taken together, it can be concluded that plasma-treated polyethylene fiber applied to composite resin is an effective method in increasing flexural strength, and the best way of increasing the flexural strength is by application of plasma-treated polyethylene fiber to the tension side, or the embedding of same in composite resin. It must be mentioned however that this test used a static single-load test method. This method determined the maximum stresses that could be tolerated, but this might not be valid where the prediction of clinical failure is concerned. In order therefore to clinically utilize plasma-treated polyethylene fiber to reinforce the composite resin, it is suggested that a further study which considers the various loads be undertaken.

  • PDF

Development of Pitch Pine Glued Laminated Timber for Structural Use -Improvement of Bending Capacity of Pitch Pine Glulam by Using Domestic Larch Laminars- (리기다소나무의 구조용 집성재 이용기술 개발 -낙엽송 층재와의 혼합 구성을 통한 집성재의 휨성능 향상-)

  • Kim, Kwang-Mo;Shim, Kug-Bo;Park, Joo-Saeng;Kim, Wun-Sub;Lim, Jin-Ah;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.13-22
    • /
    • 2007
  • This study was carried out to scrutinize possibility of manufacturing pitch pine (Pinus rigida) glued laminated timber in order to add values of pitch pine trees. Also, it was investigated to improve bending performance of pitch pine glulam. Pitch pine was imported as one of major plantation species in Korean peninsula. Machine stress rated grades of pitch pine lumber mostly ranged between E7 and E9. which grades were more or less inferior to producing high quality glulam. However, the adhesive properties between pitch pine and pitch pine, and between pitch pine and Japanese larch (Larix kaempferi Carr.), such as shear bond strength, wood failure rate and de-lamination rate of bonded layer submerged in cold and boiling water, were higher than Korean Standard criteria. These properties are essential for manufacturing glulam with single species or multiple species. The modulus of rupture (MOR) of pitch pine glulam exceeded the criterion of Korean Standard for glulam strength grade but modulus of elasticity (MOE) was lower than the criterion. On the other hand, the bending performances (MOR and MOE) were improved 20 percent by mixing with Japanese larch laminar. It is effective to arrange higher quality Japanese larch laminar at the outer layer of glulam for improving bending performances. In conclusion, it is possible to use low quality pitch pine as laminar of structural glulam for adding values of pitch pine.

Thermal Compression of Copper-to-Copper Direct Bonding by Copper films Electrodeposited at Low Temperature and High Current Density (저온 및 고전류밀도 조건에서 전기도금된 구리 박막 간의 열-압착 직접 접합)

  • Lee, Chae-Rin;Lee, Jin-Hyeon;Park, Gi-Mun;Yu, Bong-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.102-102
    • /
    • 2018
  • Electronic industry had required the finer size and the higher performance of the device. Therefore, 3-D die stacking technology such as TSV (through silicon via) and micro-bump had been used. Moreover, by the development of the 3-D die stacking technology, 3-D structure such as chip to chip (c2c) and chip to wafer (c2w) had become practicable. These technologies led to the appearance of HBM (high bandwidth memory). HBM was type of the memory, which is composed of several stacked layers of the memory chips. Each memory chips were connected by TSV and micro-bump. Thus, HBM had lower RC delay and higher performance of data processing than the conventional memory. Moreover, due to the development of the IT industry such as, AI (artificial intelligence), IOT (internet of things), and VR (virtual reality), the lower pitch size and the higher density were required to micro-electronics. Particularly, to obtain the fine pitch, some of the method such as copper pillar, nickel diffusion barrier, and tin-silver or tin-silver-copper based bump had been utillized. TCB (thermal compression bonding) and reflow process (thermal aging) were conventional method to bond between tin-silver or tin-silver-copper caps in the temperature range of 200 to 300 degrees. However, because of tin overflow which caused by higher operating temperature than melting point of Tin ($232^{\circ}C$), there would be the danger of bump bridge failure in fine-pitch bonding. Furthermore, regulating the phase of IMC (intermetallic compound) which was located between nickel diffusion barrier and bump, had a lot of problems. For example, an excess of kirkendall void which provides site of brittle fracture occurs at IMC layer after reflow process. The essential solution to reduce the difficulty of bump bonding process is copper to copper direct bonding below $300^{\circ}C$. In this study, in order to improve the problem of bump bonding process, copper to copper direct bonding was performed below $300^{\circ}C$. The driving force of bonding was the self-annealing properties of electrodeposited Cu with high defect density. The self-annealing property originated in high defect density and non-equilibrium grain boundaries at the triple junction. The electrodeposited Cu at high current density and low bath temperature was fabricated by electroplating on copper deposited silicon wafer. The copper-copper bonding experiments was conducted using thermal pressing machine. The condition of investigation such as thermal parameter and pressure parameter were varied to acquire proper bonded specimens. The bonded interface was characterized by SEM (scanning electron microscope) and OM (optical microscope). The density of grain boundary and defects were examined by TEM (transmission electron microscopy).

  • PDF

SHEAH BOND STRENGTH OF VENEERING CERAMIC TO ELECTROFORMED GOLD WITH THREE DIFFERENT SURFACE TREATMENT (표면처리방법에 따른 전기성형금속의 도재결합강도)

  • Kim Cheol;Lim Jang-Seop;Jeon Young-Chan;Jeong Chang-Mo;Jeong Hee-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.5
    • /
    • pp.599-610
    • /
    • 2005
  • Purpose: The success of the bonding between electroformed gold and ceramic is dependent on the surface treatment of the pure gold coping. The purpose of this study was to evaluate the bonding strength between the electroformed gold and ceramic with varying surface treatment. Materials and methods: A total of 32 disks,8 were using conventional ceramometal alloy, 24 were using electroforming technique as recommended by manufacturer, were prepared. 24 electroformed disks were divided 3 groups according to surface treatment, i.e. 50 microns aluminium oxide sandblasting(GES-Sand), gold bonder treatment(GES-Bond) and $Rocatec^{TM}$ system(GES-Rocatec). For control group of conventional alloy 50 microns aluminium oxide treatment was done(V-Supragold). Energy dispersive x-ray analysis and scanning electron microscope image were observed. Using universal testing machine, shear bond strength and bonding failure mode at metal-porcelain interface were measured. Results and Conclusion: The following conclusions were drawn: 1. In the energy dispersive x-ray analysis, the Au was main component in electroformed gold(99.9wt%). After surface treatment, a little amount of $Al_2O_3(2.4wt%)$ were found in GES-Sand, and $SiO_2(4wt%)$ in GES-Bond. In GES-Rocatec, however, a large amount of $SiO_2(17.4wt%)$ were found. 2. In the scanning electron microscopy, similar pattern of surface irregu larities were observed in V-Supragold and GES-Sand. In GES-Bond, surface irregularities were increased and globular ceramic particles were observed. In GES-Rocatec, a large amount of silica particles attached to metal surface with increased surface irregularities were observed. 3. The mean shear bond strength values(MPa) in order were $22.9{\pm}3.7(V-Supragold),\;22.1{\pm}3.8(GES-Bond),\;20.1{\pm}2.8(GES-Rocatec)\;and\;13.0{\pm}1.4(GES-Sand)$. There was no significant difference between V-Supragold, GES-Bond, and GES-Rocatec. (P>0.05) 4. Most bonding failures modes were adhesive type in GES-Sand. However, in V-Supragold, GES-Bond and GES-Rocatec, cohesive and combination failures were commonly observed. From the result, with proper surface treatment method electroformed gold may have enough strength compare to conventional ceramometal alloy.