• Title/Summary/Keyword: Machine Element

Search Result 1,292, Processing Time 0.026 seconds

Design and Performance Test of the Shoe Holder Spring of the Axial Piston Pump (액셜 피스톤 펌프의 슈 홀드 스프링 설계 및 성능시험)

  • Chun, Young-Jun;Choi, Jin-Ho;Chung, Hee-Taeg;Lee, Sang-Chan;Kim, Tae-Il;Kim, Dong-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2228-2236
    • /
    • 2002
  • The axial piston pump by which the mechanical energy is converted into hydraulic energy has been widely used in a press, a injection molding machine and construction equipments due to the high specific power compared to the electric power system. In this paper, the one-piece shoe holder spring of the axial piston pump to simplify its structure and reduce this manufacturing cost was designed and tested. The finite element analyses using the 3-D shell element and contact element were performed to determine the thickness, width and initial angle of the shoe holder spring. Also, the compressive tests of the shoe holder spring were performed and their results were compared with those of the finite element analysis. Also, the performance and endurance limit of axial piston pump with the shoe holder spring were tested and evaluated.

FE model updating method incorporating damping matrices for structural dynamic modifications

  • Arora, Vikas
    • Structural Engineering and Mechanics
    • /
    • v.52 no.2
    • /
    • pp.261-274
    • /
    • 2014
  • An accurate finite element (FE) model of a structure is essential for predicting reliably its dynamic characteristics. Such a model is used to predict the effects of structural modifications for dynamic design of the structure. These modifications may be imposed by design alterations for operating reasons. Most of the model updating techniques neglect damping and so these updated models can't be used for accurate prediction of vibration amplitudes. This paper deals with the basic formulation of damped finite element model updating method and its use for structural dynamic modifications. In this damped damped finite element model updating method, damping matrices are updated along with mass and stiffness matrices. The damping matrices are updated by updating the damping coefficients. A case involving actual measured data for the case of F-shaped test structure, which resembles the skeleton of a drilling machine is used to evaluate the effectiveness of damped FE model updating method for accurate prediction of the vibration levels and thus its use for structural dynamic modifications. It can be concluded from the study that damped updated FE model updating can be used for structural dynamic modifications with confidence.

Finite Element Analysis of Statics and Natural Characteristic of Vibrating Screen (진동스크린의 정적 및 고유특성 유한요소해석)

  • Hong, Seok-Beom;Kwon, Hyuk-Hong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.5
    • /
    • pp.886-893
    • /
    • 2013
  • A vibrating screen with multiple decks is widely employed for the process separation of many valuable export commodities. In this study, the inclination angle of the deck of the vibrating screen and the direction angle of the screen's vibration under single particle kinematics were predicted. A finite element model of the vibrating screen was established by parameterization modeling. Through modal analysis and static analysis of the model, the natural frequency, natural vibration mode, and stress distribution of the structure were determined, based on which the dynamics and design optimization of the vibrating screen could be achieved. Future plans also reflect this by conducting detailed design of vibrating screens for the manufacturing plans of vibrating screen machine.

A Study on Penetration Performance of Bit Design Geometry (Bit 설계형상의 굴진성능에 관한 연구)

  • Kim, Kwang-Hee;Lee, Yun-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4359-4364
    • /
    • 2012
  • In this study, we carried out finite element analysis for drill bit design on ground boring. We verified analysis between drill bit analysis results and experiment results of test machine. From the study, the results expect that time and cost reduction for experiment using finite element analysis for determination on drill bit geometry and material property.

Domain Decomposition using Substructuring Method and Parallel Computation of the Rigid-Plastic Finite Element Analysis (부구조법에 의한 영역 분할 및 강소성 유한요소해석의 병렬 계산)

  • Park, Keun;Yang, Dong-Yol
    • Transactions of Materials Processing
    • /
    • v.7 no.5
    • /
    • pp.474-480
    • /
    • 1998
  • In the present study a domain decomposition scheme using the substructuring method is developed for the computational efficiency of the finite element analysis of metal forming processes. in order to avoid calculation of an inverse matrix during the substructuring procedure, the modified Cholesky decomposition method is implemented. As obtaining the data independence by the substructuring method the program is easily paralleized using the Parallel Virtual machine(PVM) library on a work-station cluster connected on networks. A numerical example for a simple upsetting is calculated and the speed-up ratio with respect to various number of subdomains and number of processors. The efficiency of the parallel computation is discussed by comparing the results.

  • PDF

A Study on Shape Optimization for Seal Groove of Disc Caliper using Finite Element Method and Taguchi's Method (유한요소해석과 다구찌 방법에 의한 디스크 캘리퍼 씰 홈의 형상 최적화에 관한 연구)

  • Kim, Jin-Han;Kim, Soo-Tae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.1
    • /
    • pp.88-94
    • /
    • 2006
  • A typical disk brake system consists of caliper housing, piston, seal and two pads etc. The configuration of seal groove, dimension of piston and seal, and seal material properties are important ones for brake performance, as these affect the retraction of piston. The rubber seal is designed to perform dual functions of sealing the brake oil at brake-applied and retracting the caliper piston at brake-released. In this paper, the seal stress is analyzed using Finite Element Method and experiment is conducted by Taguchi's Method. We attempt to quantify the critical design factors in the seal groove and evaluate their impact on some of brake performance factors. The investigation obtained from this study can not only enhance the seal groove design optimization, but also reduce product prototype testing and development time.

On the Deformation Analysis of the Brake Tube-End for Automobiles (자동차용 브레이크 튜브 관단부의 성형해석)

  • Han, K.T.;Park, J.S.
    • Journal of Power System Engineering
    • /
    • v.6 no.3
    • /
    • pp.31-35
    • /
    • 2002
  • Brake tube is considered one of the most important parts in automobile. The shape of brake tube end has a great influence on the function of brake, and the quality and productivity of brake tube have relation to die design. The forming process of brake tube end is performed by hydraulic press forming machine. In this paper, the forming processes of tube end for automobile is analyzed and designed to make the optimal form of brake tube end. Also, finite element analysis has been carried out using $DEFORM^{TM}% 3D to predict the optimal shape of brake tube end and the results obtained showed the optimal length between punch and chuck is $1.0{\sim}1.2mm$. The shape of tube end is in good agreement with the finite element simulations and the experimental results.

  • PDF

Finite Element Analysis of L.I.M. Considering the Voltage as a Driving Source (전압을 구동함수로 한 선형 유도전동기의 유한요소 해석)

  • 임달호;최창규
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.3
    • /
    • pp.250-257
    • /
    • 1991
  • In the analysis of the electric machine by finite element method, the primary current has been selected as a driving source. But the voltage is constant and the primary current varies according to the load condition in the pracdtical system. Therefore, in this paper, magnetic flux distribution, primary current, input effective power, power factor, efficiency and propulsion force of S.L.I.M. were calculated by the finite element method cnsidering the voltage as a driving source. Because the driving characteristics could not be measured in the S.L.I.M., voltage-current curve, 3-phase current curve, and propulsion force were measured at the starting and they were compared with theoretical values.

Finite Element Modeling of The Basilar Membrane in Cochlea (달팽이관내 기저막의 유한요소 모델링)

  • 강희용;김봉철;양성모;임재중
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.22-27
    • /
    • 2001
  • Cochlea is well known to have the ability to analyze a wide frequency and this ability seems to be caused to the Basilar Membrane(BM) configuration. However, the relationship between the Cochlea frequency-position map is not clear. In this paper, the three-dimensional BM Model was made using the Finite Element method. Then, an attempt was made to examine the influence of the BM configuration on the Cochlea frequency-position map. Theoretical consideration reveals that the wide frequency-position of Cochlea is achieved by not only the BM configuration change along the length of the Cochlea but also the change of the Young's module of the BM along the length of the Cochlea.

  • PDF

Finite Element Modeling of the Basilar Membrane in Cochlea (달팽이관내 기저막의 유한요소 모델링)

  • 강희용;양성모;김봉철;임재중;용부중
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.1
    • /
    • pp.114-119
    • /
    • 2002
  • Cochlea is well known to have the ability to analyze a wide frequency and this ability seems to be caused to the Basilar Membrane(BM) configuration. However, the relationship between the Cochlea frequency-position map is not clear. In this paper, the three-dimensional BM Model was made using the Finite Element Method. Then an attempt was made to examine the influence of the BM configuration on the Cochlea frequency-position map. Theoretical consideration reveals that the wide frequency-position of Cochlea is achieved by not only the BM configuration change along the length of the Coohlea but also the change of the Young's module of the BM along the length of the Cochlea.