• Title/Summary/Keyword: Machine Element

Search Result 1,292, Processing Time 0.027 seconds

The Study on Design and Dynamic Operation Characteristics of Linear Pulse I for Embroidery Machine (자수기에 맞는 LPM의 설계와 구동 특성에 관한 연구)

  • Park, Chang-Soon;Kwon, Tae-Gun
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.91-93
    • /
    • 2001
  • Linear pulse Motors(LPM) are widely used in fields where smooth linear motion is required, and their position accuracy is higher than other motors. Hybrid linear pulse motors(HLPM) are regarded as an excellent solution to positioning problems that require high accuracy, rapid acceleration and high-speed. The LPM has low mechanical complexity, high reliability, precise open-loop operation and low inertia etc. In many application areas such as factory automation speed positioning, computer peripherals and numerically controlled machine tools, LPM can be used. This motor drive system is especially suitable for machine tools the high position accuracy and repeatability. This paper describes about that need of the embroider machine, we want to design position-scanning device for the embroidery machine. At first, to be analysed characteristics of the machine and next designed the LPM, we used the field analysis program. The finite element method(FEM) program tool is employed for calculation the force. The reluctance models will be used the magnetic permeance of air gap by static-conditions. The forces between forcer and platen have been calculated using the virtual work method. And we used the simulink to know the dynamic characteristics of LPM.

  • PDF

Machine Learning Methodology for Management of Shipbuilding Master Data

  • Jeong, Ju Hyeon;Woo, Jong Hun;Park, JungGoo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.428-439
    • /
    • 2020
  • The continuous development of information and communication technologies has resulted in an exponential increase in data. Consequently, technologies related to data analysis are growing in importance. The shipbuilding industry has high production uncertainty and variability, which has created an urgent need for data analysis techniques, such as machine learning. In particular, the industry cannot effectively respond to changes in the production-related standard time information systems, such as the basic cycle time and lead time. Improvement measures are necessary to enable the industry to respond swiftly to changes in the production environment. In this study, the lead times for fabrication, assembly of ship block, spool fabrication and painting were predicted using machine learning technology to propose a new management method for the process lead time using a master data system for the time element in the production data. Data preprocessing was performed in various ways using R and Python, which are open source programming languages, and process variables were selected considering their relationships with the lead time through correlation analysis and analysis of variables. Various machine learning, deep learning, and ensemble learning algorithms were applied to create the lead time prediction models. In addition, the applicability of the proposed machine learning methodology to standard work hour prediction was verified by evaluating the prediction models using the evaluation criteria, such as the Mean Absolute Percentage Error (MAPE) and Root Mean Squared Logarithmic Error (RMSLE).

Sparse DTMNs routihg protocol for the M2M environment (Sparse M2M 환경을 위한 DTMNs 라우팅 프로토콜)

  • Wang, Jong Soo;Seo, Doo Ok
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.4
    • /
    • pp.11-18
    • /
    • 2014
  • Recently, ICT technology has been evolving towards an M2M (Machine to Machine) environment that allows communication between machine and machine from the communication between person and person, and now the IoT (Internet of Things) technology that connects all things without human intervention is receiving great attention. In such a network environment, the communication network between object and object as well as between person and person, and person and object is available which leads to the sharing of information between all objects, which is the essential technical element for us to move forward to the information service society of the era of future ubiquitous computing. On this paper, the protocol related to DTMNs in a Sparse M2M environment was applied and the improved routing protocol was applied by using the azimuth and density of the moving node in order to support a more efficient network environment to deliver the message between nodes in an M2M environment. This paper intends to verify the continuity of the study related to efficient routing protocols to provide an efficient network environment in the IoT and IoE (Internet of Everything) environment which is as of recently in the spotlight.

Development and Evaluation for the Insulated Coupling Test Machine of a Large Wind Turbine (대형 풍력터빈 절연커플링 시험장치 개발 및 평가)

  • Ju, Sung Ha;Kim, Dong Hyun;Oh, Min Woo;Kim, Su Hyun;Kang, Jong Hun;Bae, Jun Wu;Lee, Hyoung Woo;Kim, Kyung He
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.8
    • /
    • pp.543-556
    • /
    • 2016
  • In this work, an insulated coupling test machine for a 5-MW-class wind turbine was designed and developed, along with the public performance testing of a 3-MW-class wind turbine. The results of the device design, development requirements, functional considerations, structural vibration analysis, and the evaluation of the insulated coupling test machine are presented in this study. For the coupling models, thick fiberglass composite pipe insulation, fabricated by filament winding, was considered. Results of three-dimensional finite element analysis conducted using both solid element and shell element modeling were analyzed and compared, considering the effect of thickness. In addition, results from the nonlinear finite element analysis of multiple leaf springs of the laminated disk pack structure were verified and compared with experimental data.

Analysis of Dynamic Characteristics of End Mill for High Speed Cutting (고속가공용 엔드밀의 동특성 분석)

  • 임경화;유중학;이우영;장헌탁
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.341-346
    • /
    • 2004
  • Performance Evaluation of end mills for high speed cutting has been performed in a view of dynamic characteristics and noise-vibration under operation. The tools tested in this research consist of three foreign country made and one korean made. In addition, numerical models using finite element method are established, which are confirmed by experimental results. The evaluation results has been feedback for developing high performance end mills fur high speed cutting tools.

  • PDF

Equivalent Loads for Spot-Weld Distortions (점용접 변형에 대한 등가하중)

  • Chu, Seok-Jae;Lee, Sang-Hyuk
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1499-1504
    • /
    • 2007
  • Spot-welding is widely used to construct passenger car bodies in automotive industry. Occasionally severe spot-weld distortions in sub-assembly make further spot-weld difficult. In this paper, distortions for various spot-weld conditions are measured using coordinate measuring machine. Then, based on finite element solution for unit translation or unit rotation of nugget edge, equivalent loads for spot-weld distortions are determined. They can be used to predict the spot-weld distortion using finite element method.

  • PDF

Three-Dimensional Time Varing Magnetic Field Analysis: Using E-$\Omega$ Method (E-$\Omega$ 법을 이용한 3차익 교류 자장 해석)

  • Kim, Dong-Soo;Han, Song-Yup
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.49-52
    • /
    • 1989
  • Some limits are in two-dimensional analysis by finite element method to electromagnetic machine having finite dimension. Therefore three-dimensional analysis by finite element method, which are modeling original form of models are needed in order to gain accurate solutions. This paper present three-dimensional time varing magnetic field analysis method using electric field E and magnetic scarlar potential $\Omega$, and examine sample model.

  • PDF

Crush Characteristics of Thin-walled Rectangular Tube (박판사각튜브의 압괴 특성)

  • 이종선
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.261-266
    • /
    • 1998
  • In this study, crush characteristics of thin-walled rectangular tube is investigated. The stiffness of the element is obtained from analytical moment-rotation relationship and approximated load-deflection relationship of thin-walled rectangular tube. A computer program is developed for the large deformation analysis of frame. An incremental displacement method is used in the program and at each incremental stage, the stiffness matrix of the total structure is checked with the state each element for bending and compression.

  • PDF

Analysis of Dynamic Characteristics of End Mills for High Speed Cutting (고속가공용 엔드밀의 동특성 분석)

  • 장헌탁;유중학;이우영;임경화
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.478-483
    • /
    • 2003
  • Performance Evaluation of end mills for high speed cutting has been performed in a view of dynamic characteristics and noise-vibration under operation. The tools tested in this research consist of three foreign country made and one korean made. In addition, numerical models using finite element method are established, which are confirmed by experimental results. The evaluation results has been feedback fur developing high performance end mills for high speed cutting tools.

  • PDF

Finite Element Analysis for Hysteresis Motors (히스테리시스 전동기의 유한요소해석)

  • Hong, Sun-Ki;Won, Jong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.15-17
    • /
    • 1995
  • Hysteresis motor is a synchronous machine which has simple structure and self-start characteristic but also has serious difficulties in numerical analysis. In this study, a finite element analysis for hysteresis motor considering the hysteresis characteristics is presented. The hysteresis model is the magnetization-dependent Preisach model which explains hysteresis phenomena very well. From this, we estimate the instantaneous torque, average torque and hysteresis loss of the rotor, considering slot and winding distribution.

  • PDF