• Title/Summary/Keyword: Machine Element

Search Result 1,291, Processing Time 0.033 seconds

Development of a Tool for Automation of Finite Element Analysis of a Shaft-Bearing System of Machine Tools (공작기계 회전축-베어링 시스템의 유한요소해석 자동화를 위한 툴 개발)

  • Choi, Jin-Woo;Kang, Gi-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.6
    • /
    • pp.19-25
    • /
    • 2019
  • We have developed a tool that uses finite element analysis (FEA) to rapidly evaluate a shaft-bearing system of machine tools. We extracted commercial data on suitable clamping units and defined the inner profile of the shaft to avoid needing direct user input to define the profile. We use a splitting algorithm to convert the shaft into beam elements with two diameters and length. To validate the tool, we used it to design and evaluate a shaft-bearing system and found that our tool automated the construction of an FE system model in a commercial FEA package as well as the static stiffness evaluation; both tasks were completed in seconds, demonstrating a significant reduction from the minutes normally required to complete these tasks manually.

Core Technologies of Next-generation Machine Tools

  • Lee, Jae-yoon
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.61-70
    • /
    • 2000
  • This paper described the current status of machine tool technology and its future trends with a particular emphasis on high-speed machining. People in machine tool industry have continuously sought to serve fast-changing manufacturing industry with economical machining solutins. At presents, it appears that more productivity gain is demanded to shorten time-to-market and machining requirements become more stringent. In this regard, this paper firstly addressed a high-speed spindle as a key element for the next-generation machine tools. The sequel to it apparently went to high-speed feed axes and final discussion included the problem of how to optimize overall system including servo function. Lastly a brief look to NC technology including machine intelligence was taken.

  • PDF

Analysis on the Vibration Characteristics of Ultra Precision Machine Tools (초정밀 가공 기계의 진동 특성 해석)

  • Kim, Seong Geol;Park, Young Ii;Kim, Seock Hyun
    • Journal of Industrial Technology
    • /
    • v.14
    • /
    • pp.119-125
    • /
    • 1994
  • Ultra-precision machine tool equipped with the diamond bite tip is used to machine optical products, drums of VTR or computer hard disk. It needs nano technology in the surface roughness of workpiece. To perform the nano scale machining, ultra-precision machine tool must be designed and manufactured in consideration of the vibration characteristics. In this paper, using the finite element analysis, we investigate the modal parameters of the ultra-precision machine tool structures, which use cast iron, granite and alumina ceramic for the bed materials. To verify the numerical results, we manufacture a model of ultra-precision machine tool using granite bed and perform impulse test. Through the theoretical and experimental analyses, we could compare and estimate the vibration characteristics of the three models for the ultra-precision machine tools.

  • PDF

A Study on an Internet-based Remote Diagnosis System for Machine Tool Failures (인터넷 기반의 공작기계 고장 원격 진단시스템에 관한 연구)

  • Kang, Dae-Chon;Kang, Mu-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.75-81
    • /
    • 1999
  • In order to remain competitive, a manufacturing company needs to maintain the optimal condition of its manufacturing system. Machine tools as an important element of a manufacturing system consist of complex mechanical as well as electronic components. Therefore, diagnosing the troubles of machine tools is a tricky process which requires a lot of experience and knowledge. Since providing machine tool users with necessary services at the right time is very difficult and expensive, a remote diagnosis system is to be regarded as a good alternative, with which users can diagnose and fix the machine troubles. This paper presents a framework for a remote machine tools diagnosis system by combining the world wide web technology and backward reasoning expert system.

  • PDF

Development of Virtual Prototype for Labeling: Unit on the Automatic Battery Manufacturing Line (건전지 자동화 조립라인의 라벨링부의 Virtual Prototype 개발)

  • 정상화;차경래;김현욱;신병수;나윤철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.357-362
    • /
    • 2002
  • Most of battery industries are growing explosively as a core strategy industry for the development of the semi-conductor, the LCD, and the mobile communication device. In this thesis, dynamic characteristics of the steel can labeling machine on the automatic cell assembly line are studied. Dynamic characteristic analysis consists of dynamic behavior analysis and finite element analysis and is necessary for effective design of machines. In the dynamic behavior analysis, the displacement, velocity, applied force and angular velocity of each components are simulated according to each part. In the FEA, stress analysis, mode analysis, and frequency analysis are performed for each part. The results of these simulations are used for the design specification investigation and compensation for optimal design of cell manufacturing line. Therefore, Virtual Engineering of the steel can labeling machine on the automatic cell assembly line systems are modeled and simulated. 3D motion behavior is visualized under real-operating condition on the computer window. Virtual Prototype make it possible to save time by identifying design problems early in development, cut cost by reducing making hardware prototype, and improve quality by quickly optimizing full-system performance. As the first step of CAE which integrates design, dynamic modeling using ADAMS and FEM analysis using NASTRAN are developed.

  • PDF

Machine-Learning based Smart Seat for Correction of Driver's Posture while Driving (기계학습 기반의 주행중 운전자 자세교정을 위한 지능형 시트)

  • Park, Heum;Lee, Changbum
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.4
    • /
    • pp.81-90
    • /
    • 2017
  • This paper presents a smart seat for correction of driver posture while driving. We introduce good postures with seat height, seat angle, head height, back of knees, distances of foot pedals, tilt of seat, etc. There have been some studies on correction of good posture while driving, effects of driving environment on driver's posture, sitting strategies based on seating pressure distribution, estimation of driver's standard postures, and others. However, there are a few studies on guide of good postures while driving for problem of driver's posture using machine leaning. Therefore, we suggest a smart seat for correction of driver's posture based on machine leaning, 1) developed the system to get postures by 10 piezoelectric effect element, 2) collect piezoelectric values from 37 drivers and 28 types of cars, 3) suggest 4 types of good postures while driving, 4) analyze test postures by kNN. As the results, we can guide good postures for bad or problems of postures while driving.