• Title/Summary/Keyword: Machine Accuracy

Search Result 3,200, Processing Time 0.032 seconds

Performance Comparison of Machine Learning Algorithms for Received Signal Strength-Based Indoor LOS/NLOS Classification of LTE Signals

  • Lee, Halim;Seo, Jiwon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.361-368
    • /
    • 2022
  • An indoor navigation system that utilizes long-term evolution (LTE) signals has the benefit of no additional infrastructure installation expenses and low base station database management costs. Among the LTE signal measurements, received signal strength (RSS) is particularly appealing because it can be easily obtained with mobile devices. Propagation channel models can be used to estimate the position of mobile devices with RSS. However, conventional channel models have a shortcoming in that they do not discriminate between line-of-sight (LOS) and non-line-of-sight (NLOS) conditions of the received signal. Accordingly, a previous study has suggested separated LOS and NLOS channel models. However, a method for determining LOS and NLOS conditions was not devised. In this study, a machine learning-based LOS/NLOS classification method using RSS measurements is developed. We suggest several machine-learning features and evaluate various machine-learning algorithms. As an indoor experimental result, up to 87.5% classification accuracy was achieved with an ensemble algorithm. Furthermore, the range estimation accuracy with an average error of 13.54 m was demonstrated, which is a 25.3% improvement over the conventional channel model.

Slangs and Short forms of Malay Twitter Sentiment Analysis using Supervised Machine Learning

  • Yin, Cheng Jet;Ayop, Zakiah;Anawar, Syarulnaziah;Othman, Nur Fadzilah;Zainudin, Norulzahrah Mohd
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.294-300
    • /
    • 2021
  • The current society relies upon social media on an everyday basis, which contributes to finding which of the following supervised machine learning algorithms used in sentiment analysis have higher accuracy in detecting Malay internet slang and short forms which can be offensive to a person. This paper is to determine which of the algorithms chosen in supervised machine learning with higher accuracy in detecting internet slang and short forms. To analyze the results of the supervised machine learning classifiers, we have chosen two types of datasets, one is political topic-based, and another same set but is mixed with 50 tweets per targeted keyword. The datasets are then manually labelled positive and negative, before separating the 275 tweets into training and testing sets. Naïve Bayes and Random Forest classifiers are then analyzed and evaluated from their performances. Our experiment results show that Random Forest is a better classifier compared to Naïve Bayes.

The Role of Data Technologies with Machine Learning Approaches in Makkah Religious Seasons

  • Waleed Al Shehri
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.26-32
    • /
    • 2023
  • Hajj is a fundamental pillar of Islam that all Muslims must perform at least once in their lives. However, Umrah can be performed several times yearly, depending on people's abilities. Every year, Muslims from all over the world travel to Saudi Arabia to perform Hajj. Hajj and Umrah pilgrims face multiple issues due to the large volume of people at the same time and place during the event. Therefore, a system is needed to facilitate the people's smooth execution of Hajj and Umrah procedures. Multiple devices are already installed in Makkah, but it would be better to suggest the data architectures with the help of machine learning approaches. The proposed system analyzes the services provided to the pilgrims regarding gender, location, and foreign pilgrims. The proposed system addressed the research problem of analyzing the Hajj pilgrim dataset most effectively. In addition, Visualizations of the proposed method showed the system's performance using data architectures. Machine learning algorithms classify whether male pilgrims are more significant than female pilgrims. Several algorithms were proposed to classify the data, including logistic regression, Naive Bayes, K-nearest neighbors, decision trees, random forests, and XGBoost. The decision tree accuracy value was 62.83%, whereas K-nearest Neighbors had 62.86%; other classifiers have lower accuracy than these. The open-source dataset was analyzed using different data architectures to store the data, and then machine learning approaches were used to classify the dataset.

Development of Prediction Model of Chloride Diffusion Coefficient using Machine Learning (기계학습을 이용한 염화물 확산계수 예측모델 개발)

  • Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.3
    • /
    • pp.87-94
    • /
    • 2023
  • Chloride is one of the most common threats to reinforced concrete (RC) durability. Alkaline environment of concrete makes a passive layer on the surface of reinforcement bars that prevents the bar from corrosion. However, when the chloride concentration amount at the reinforcement bar reaches a certain level, deterioration of the passive protection layer occurs, causing corrosion and ultimately reducing the structure's safety and durability. Therefore, understanding the chloride diffusion and its prediction are important to evaluate the safety and durability of RC structure. In this study, the chloride diffusion coefficient is predicted by machine learning techniques. Various machine learning techniques such as multiple linear regression, decision tree, random forest, support vector machine, artificial neural networks, extreme gradient boosting annd k-nearest neighbor were used and accuracy of there models were compared. In order to evaluate the accuracy, root mean square error (RMSE), mean square error (MSE), mean absolute error (MAE) and coefficient of determination (R2) were used as prediction performance indices. The k-fold cross-validation procedure was used to estimate the performance of machine learning models when making predictions on data not used during training. Grid search was applied to hyperparameter optimization. It has been shown from numerical simulation that ensemble learning methods such as random forest and extreme gradient boosting successfully predicted the chloride diffusion coefficient and artificial neural networks also provided accurate result.

Combining Machine Learning Techniques with Terrestrial Laser Scanning for Automatic Building Material Recognition

  • Yuan, Liang;Guo, Jingjing;Wang, Qian
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.361-370
    • /
    • 2020
  • Automatic building material recognition has been a popular research interest over the past decade because it is useful for construction management and facility management. Currently, the extensively used methods for automatic material recognition are mainly based on 2D images. A terrestrial laser scanner (TLS) with a built-in camera can generate a set of coloured laser scan data that contains not only the visual features of building materials but also other attributes such as material reflectance and surface roughness. With more characteristics provided, laser scan data have the potential to improve the accuracy of building material recognition. Therefore, this research aims to develop a TLS-based building material recognition method by combining machine learning techniques. The developed method uses material reflectance, HSV colour values, and surface roughness as the features for material recognition. A database containing the laser scan data of common building materials was created and used for model training and validation with machine learning techniques. Different machine learning algorithms were compared, and the best algorithm showed an average recognition accuracy of 96.5%, which demonstrated the feasibility of the developed method.

  • PDF

New Temporal Features for Cardiac Disorder Classification by Heart Sound (심음 기반의 심장질환 분류를 위한 새로운 시간영역 특징)

  • Kwak, Chul;Kwon, Oh-Wook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.2
    • /
    • pp.133-140
    • /
    • 2010
  • We improve the performance of cardiac disorder classification by adding new temporal features extracted from continuous heart sound signals. We add three kinds of novel temporal features to a conventional feature based on mel-frequency cepstral coefficients (MFCC): Heart sound envelope, murmur probabilities, and murmur amplitude variation. In cardiac disorder classification and detection experiments, we evaluate the contribution of the proposed features to classification accuracy and select proper temporal features using the sequential feature selection method. The selected features are shown to improve classification accuracy significantly and consistently for neural network-based pattern classifiers such as multi-layer perceptron (MLP), support vector machine (SVM), and extreme learning machine (ELM).

Performance Assessment of Linear Motor for High Speed Machining Center (고속 HMC 이송계의 운동 특성 평가)

  • 홍원표;강은구;이석우;최헌종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.158-161
    • /
    • 2003
  • Recently, the evolution in production techniques (e.g. high-speed milling), the complex shapes involved in modem production design, and the ever increasing pressure for higher productivity demand a drastic improvement of the dynamic behavior of the machine tool axes used in production machinery. And also machine tools of multi functional and minimized parts are increasingly required as demand of higher accurate in some fields such as electronic and optical components etc. The accuracy and the productivity of machined parts are natural to depend on the linear system of machine tools. The complex workpiece surfaces encountered in present-day products and generated by CAD systems are to be transformed into tool paths for machine tools. The more complex these tool paths and the higher the speed requirements, the higher the acceleration requirements are needed to the machine tool axes and the motion control system, and the more difficult it is to meet the requirements. The traditional indirect drive design for high speed machine tools, which consists of a rotary motor with a ball-screw transmission to the slide, is limited in speed, acceleration, and accuracy. The direct drive design of machine tool axes. which is based on linear motors and which recently appeared on the market. is a viable candidate to meet the ever increasing demands, because of these advantages such as no backlash, less friction, no mechanical limitations on acceleration and velocity and mechanical simplicity. Therefore performance tests were carried out to machine tool axes based on linear motor. Especially, dynamic characteristics were investigated through circular test.

  • PDF

A Study on Human Recognition Experiments with Handwritten Digit for Machine Recognition of Handwritten Digit (필기 숫자의 기계 인식을 위한 인간의 필기 숫자 인식 실험에 대한 고찰)

  • Yoon, Sung-Soo;Chung, Hyun-Sook;Yi, Kwang-Oh;Lee, Yill-Byeong;Lee, Sang-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.373-380
    • /
    • 2008
  • So far there have been many researches on machine-based recognition of handwritten digit. But we have not yet attained the level of performance that can be satisfactory to men. The dissatisfaction with the performance of machine comes from not only the low accuracy of recognition but also the dissimilarity of the recognition results between man and machine. To reduce the difference of machine from man we first made an experiment with the human recognition of handwritten digits and then inquiry into the way of the human recognition that makes the results of men different from that of machine. We found out the attributes that play an important role in the human recognition process through the analysis of the experimental results like uni- and bi-directional confused pairs of digits, several ones unmixed up with another and the redundancy of mis-recognition, and proposed the approach direction to be able to improve the accuracy of the machine-based recognition, and furthermore the similarity in the recognition results of men and machine on the basis of the found facts above.

A Hybrid Mod K-Means Clustering with Mod SVM Algorithm to Enhance the Cancer Prediction

  • Kumar, Rethina;Ganapathy, Gopinath;Kang, Jeong-Jin
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.231-243
    • /
    • 2021
  • In Recent years the way we analyze the breast cancer has changed dramatically. Breast cancer is the most common and complex disease diagnosed among women. There are several subtypes of breast cancer and many options are there for the treatment. The most important is to educate the patients. As the research continues to expand, the understanding of the disease and its current treatments types, the researchers are constantly being updated with new researching techniques. Breast cancer survival rates have been increased with the use of new advanced treatments, largely due to the factors such as earlier detection, a new personalized approach to treatment and a better understanding of the disease. Many machine learning classification models have been adopted and modified to diagnose the breast cancer disease. In order to enhance the performance of classification model, our research proposes a model using A Hybrid Modified K-Means Clustering with Modified SVM (Support Vector Machine) Machine learning algorithm to create a new method which can highly improve the performance and prediction. The proposed Machine Learning model is to improve the performance of machine learning classifier. The Proposed Model rectifies the irregularity in the dataset and they can create a new high quality dataset with high accuracy performance and prediction. The recognized datasets Wisconsin Diagnostic Breast Cancer (WDBC) Dataset have been used to perform our research. Using the Wisconsin Diagnostic Breast Cancer (WDBC) Dataset, We have created our Model that can help to diagnose the patients and predict the probability of the breast cancer. A few machine learning classifiers will be explored in this research and compared with our Proposed Model "A Hybrid Modified K-Means with Modified SVM Machine Learning Algorithm to Enhance the Cancer Prediction" to implement and evaluated. Our research results show that our Proposed Model has a significant performance compared to other previous research and with high accuracy level of 99% which will enhance the Cancer Prediction.

Development of Sorting Machine for Photo Diode and Improvement of Sorting Precision by using Machine Vision (광 다이오드 분류장치 및 비젼을 이용한 정밀도 향상)

  • Ryuh B.S.;Park S.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.153-154
    • /
    • 2006
  • Development of sorting machine for photo diode and its control system is addressed. The sorting machine for optical communication device requires high positional precision because the alignment is one of the most important point in the sorting process. This sorting method describes how to detect the target chip's angle and position from the wafer. The machine vision system is used for the feedback control. This sorting machine is implemented by motion controller, machine vision and various solenoid valve and is interfaced with RS-232c, GPIB and PCI communication. This system gets the position accuracy within $1{\mu}m$ with our experiments.

  • PDF