• 제목/요약/키워드: Machinable ceramic

검색결과 46건 처리시간 0.029초

Al2TiO5가 첨가된 쾌삭(快削) SiC 세라믹스 (Machinable SiC Ceramics with Addition of Al2TiO5)

  • 김일수;박정현;이원재;이강호
    • 한국세라믹학회지
    • /
    • 제50권6호
    • /
    • pp.372-377
    • /
    • 2013
  • Machinable SiC ceramics are prepared with the addition of $Al_2TiO_5$. Ready-to-press SiC and $Al_2TiO_5$ powders are mixed and pressureless sintered at $1750^{\circ}C$ and $1850^{\circ}C$ for 1 h. The weight ratios of the SiC and $Al_2TiO_5$ powders are 100 : 0, 100 : 10, and 100 : 20. After sintering, only SiC peaks are detected in the X-ray diffraction analyses. The density, strength, and grain size of the SiC increase with increases in the $Al_2TiO_5$ content and sintering temperature. The $Al_2TiO_5$-doped specimens are easy to micro-hole machine. Based on the density and strength data, the ceramics sintered at $1850^{\circ}C$ can be used as machinable ceramics.

다구찌 방법에 의한 IED 초정밀 래핑의 최적 가공에 관한 연구 (A Study on the Optimal Machining of the IED Ultra-precision Lapping by Taguchi Method)

  • 황성철;김백겸;원종구;이은상
    • 한국공작기계학회논문집
    • /
    • 제17권4호
    • /
    • pp.29-34
    • /
    • 2008
  • Application of ceramic has increased due to excellent mechanical properties, and machining of ceramic has demanded gradually a precision surface machining. For decreasing the surface roughness, the control of IED lapping parameters is very important. This paper deal with the analysis of the process parameters such as applied forces, percentage of h-BN and IED lapping time, developed based on Taguchi method. Also, SEM was used for monitoring of a machinable ceramic surface.

$Si_3N_4-hBN$ 머시너블 세라믹의 R-curve 거동분석과 가공성 평가 (Evaluation of R-curve Behavior Analysis and Machinability of $Si_3N_4-hBN$ Machinable Ceramics)

  • 장성민;조명우;조원승;이재형
    • 한국정밀공학회지
    • /
    • 제21권1호
    • /
    • pp.61-70
    • /
    • 2004
  • Generally, ceramics are very difficult-to-cut materials because of its high strength and hardness. The machining process of ceramics can be characterized by cracking and brittle fracture. In the machining of ceramics, edge chipping and crack propagation are the principal reasons to cause surface integrity deterioration. Such phenomenon can cause not only poor dimensional and geometric accuracy, but also possible failure of the ceramic parts. Ceramics can be machined with traditional method such as grinding and polishing. However, such processes are generally cost-expensive and have low material removal rate. Thus, in this paper, to overcome these problems. BN powder, which gives good cutting property, is added for the fabrication of machinable ceramics by volume of 5,10,15,20,25 and 30%. And, mechanical properties, R-curve behavior and machining tests are carried out to evaluate the machining properties of the manufactured machinable ceramics.

IED 초정밀 래핑을 통한 $Si_3N_4$/h-BN의 표면특성 분석 (Analysis of Surface Characteristics in the $Si_3N_4$/h-BN Ceramic by IED Ultra-Precision Lapping)

  • 황성철;이정택;이은상;조명우;조원승
    • 한국정밀공학회지
    • /
    • 제25권7호
    • /
    • pp.47-54
    • /
    • 2008
  • Recently, application of ceramics has increased gradually due to excellent mechanical properties. Si3n4-BN ceramic which is one of ceramics is very hard and has superior resistance against volatile temperature and wear. However, extremely high hardness of the $Si_3N_4-BN$ ceramic makes conventional machining very difficult. Therefore, the use of machinable ceramic has been in a poor because of difficult industrial processes in spite of many advantages. And so new technology being called IED(In-process electrolytic dressing) was introduced to solve this problem. The aim of this study is to determine the machining characteristics in terms of pressurized weight to the workpiece and the influence with h-BN content using IED lapping system. Also, Acoustic Emission (AE) is used for the monitoring of surface characteristics.

가공성 세라믹 절삭에서 공구의 마멸 패턴과 메카니즘 (Wear Patterns and Mechanisms of Cutting Tool in Cutting of Machinable Ceramics)

  • 장성민;백승엽
    • 한국안전학회지
    • /
    • 제25권5호
    • /
    • pp.1-6
    • /
    • 2010
  • When the ceramic material is being machined, micro crack and brittle fracture dominate the process of material removal. Generally, ceramics are very difficult-to-cut materials and machined using conventional method such as grinding and polishing. However, such processes are generally cost-expensive and have low material removal rate. Machinable ceramics used in this study contain BN powder to overcome these problem and for productivity elevation. This paper focuses on machinability evaluation during end mill process with CNC machining center in this study. Experiment for this purpose is performed for tool wear patterns and mechanism.

Fabrication and Characterization of Electrical Discharge Machinable $Si_3N_4$-TiN Composites

  • Park, Heon-Jin;Kim, Young-Wook;Lee, June-Gunn;Lee, Soo W.;Chung, Soon-Kil
    • The Korean Journal of Ceramics
    • /
    • 제1권2호
    • /
    • pp.101-105
    • /
    • 1995
  • Electrical discharge machinable $Si_3N_4$ was fabricated with the addtion of 20-60 vol% TiN by gas pressure sintering. Their sinterability, microstructure, mechanical and electrical properties were characterized as a function of the TiN content. The addition of TiN up to 20 vol% increased the flexural strength and fracture toughness as compared with those of the monolithic Si3N4. For the TiN content higher than 40 vol%, the electrical resistivity was lower than $1062\Omega$.cm. The $Si_3N_4$ with the addition of 40 vol% of TiN appears to have the optimum considerable sinterability, mechanical and electrical properties, and machinability. A microstructural analysis showed that the enhanced toughening was due to the crack deflection.

  • PDF

Properties of Electrical Discharge Machinable $SiC-TiB_2$ Composites

  • Kim, Young-Wook;Park, Heon-Jin;Lee, June-Gunn;Lee, Soo W.;Chung, Soon-Kil
    • The Korean Journal of Ceramics
    • /
    • 제1권3호
    • /
    • pp.125-130
    • /
    • 1995
  • Electrical discharge machinable $SiC-TiB_2$ composites were fabricated by hot-pressing. Their mechanical and electrical properties were determined as a function of $TiB_2$ content. The addition of $TiB_2$ to SiC matrix increased the strength and toughness and decreased electrical resistivity. The flexural strength and fracture toughness of SiC-40 vol% $TiB_2$ composited were approximately 50% higher than those of monolithic SiC ceramics. Microstructural analysis showed that the toughening was mainly due to the crack deflection, with some possible contribution from crack branching or microcracking.

  • PDF

텅스텐 카바이드 공구를 사용한 앤드밀 가공에서 Si3n4-hBN 머시너블 세라믹스의 표면특성과 공구마멸 (Surface Properties and Tool Wear of Si3n4-hBN Machinable Ceramics in Endmill Machining using Tungsten Carbide Tool)

  • 장성민;조명우
    • 한국기계가공학회지
    • /
    • 제3권1호
    • /
    • pp.15-21
    • /
    • 2004
  • The machining process of ceramics can be characterized by cracking and brittle fracture. In the machining of ceramics, edge chipping and crack propagation are the principal reasons to cause surface integrity deterioration. Such phenomenon can cause not only poor dimensional and geometric accuracy, but also possible failure of the ceramic parts. Thus, traditional ceramics are very difficult-to-cut materials. To overcome such problems, in this paper, h-BN powder, which gives good cutting property, is added for the fabrication of machinable ceramics by volume of 5, 10, 15, 20, 25 and 30%. The objectives of this paper is to evaluate the fracture phenomenon of the tungsten carbide tool and the variation of surface integrity of the manufactured machinable ceramics under various cutting conditions during end mill machining With CNC machining center.

  • PDF

절삭 선단의 축 방향 경사각이 가공성 세라믹에 미치는 영향 (Effect on Axial Rake Angle of Cutting Edge for Machinable Ceramics)

  • 장성민;윤여권
    • 한국안전학회지
    • /
    • 제24권2호
    • /
    • pp.7-12
    • /
    • 2009
  • The machining process of ceramics can be characterized by cracking and brittle fracture. In the machining of ceramics, edge chipping and crack propagation are the principal reasons to cause surface integrity deterioration. Such phenomenon can cause not only poor dimensional and geometric accuracy, but also possible failure of the ceramic parts. Thus, traditional ceramics are very difficult-to-cut materials. Generally, ceramics are machined using conventional method such as grinding and polishing. However these processes are generally costly and have low MRR(material removal rate). To overcome such problems, in this paper, h-BN powder, which gives good cutting property, is added for the fabrication of machinable ceramics by volume of 10 and 15%. The purpose of this study is an analysis of endmill's rake angle for appropriate tools design and manufacturing for the machinable ceramics. In this study, Experimental works are executed to measure cutting force, surface roughness, tool fracture, on different axial rake angle of endmills. Cutting parameters, namely, feed, cutting speed and depth of cut are used to accomplish purpose of this paper. Required experiments are performed, and the results are investigated.

연속전해드레싱을 적용한 머신어블 세라믹의 초정밀 가공 (Ultra Precision Machining of Machinable Ceramic by Electrolytic In-process Dressing)

  • 원종구;이은상
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.223-226
    • /
    • 2002
  • Appropriate design/manufacturing conditions, to give outstanding material properties to the $Si_3$$N_4$-BN and AIN-BN based composite materials, will be investigated using the experimental design methods. Ultra-precision machinability of the developed ceramics will be systematically studied in the viewpoint of microstructure and material properties. Also, finite element methods will be applied to define basic principles to significantly improve machinability and various properties. Basic experiments will be performed to develop optimum ultra-precision machining technologies for the developed ceramics. For ultra-precision lapping machining, need to develop a ultra-precision lapping system, suitable metal bonded diamond wheel, and appropriate condition of ultra-precision lapping machining.

  • PDF