DOI QR코드

DOI QR Code

Machinable SiC Ceramics with Addition of Al2TiO5

Al2TiO5가 첨가된 쾌삭(快削) SiC 세라믹스

  • Kim, Il Soo (Department of Materials and Components Engineering, Dongeui University) ;
  • Park, Jeong Hyun (Department of Materials and Components Engineering, Dongeui University) ;
  • Lee, Won Jae (Department of Materials and Components Engineering, Dongeui University) ;
  • Lee, Kang Ho (Dandan Materials)
  • Received : 2013.09.26
  • Accepted : 2013.10.21
  • Published : 2013.11.30

Abstract

Machinable SiC ceramics are prepared with the addition of $Al_2TiO_5$. Ready-to-press SiC and $Al_2TiO_5$ powders are mixed and pressureless sintered at $1750^{\circ}C$ and $1850^{\circ}C$ for 1 h. The weight ratios of the SiC and $Al_2TiO_5$ powders are 100 : 0, 100 : 10, and 100 : 20. After sintering, only SiC peaks are detected in the X-ray diffraction analyses. The density, strength, and grain size of the SiC increase with increases in the $Al_2TiO_5$ content and sintering temperature. The $Al_2TiO_5$-doped specimens are easy to micro-hole machine. Based on the density and strength data, the ceramics sintered at $1850^{\circ}C$ can be used as machinable ceramics.

Keywords

References

  1. J. Eichler, "Industrial Applications of Si-based Cearmics," J. Kor. Ceram. Soc., 49 [6] 561-65 (2012). https://doi.org/10.4191/kcers.2012.49.6.561
  2. J. D. Lee, "Technology Trends of High Purity SiC Material (in Korean)," Ceramist, 15 [5] 51-58 (2012).
  3. K. S. Cho, S. H. Yoon, H. Jung, S. H. Chae, K. Y. Lim, Y. W. Kim, and S. W. Park, "SiC Material Technology for Semiconductor Manufacturing Process (in Korean)," Ceramist, 12 [1] 33-48 (2009).
  4. P. Blake, T. Bifano, T. Dow, and R. O. Scattergood, "Precision Machining of Ceramic Materials," Am. Ceram. Soc. Bull., 67 [6] 1038-43 (1988).
  5. H. Jin, H. Xu, G. Quio, J. Gao, and Z. Jin, "Study of Machinable Silicon Carbide-Boron Nitride Ceramic Composites," Mater. Sci. Eng., A, 483-484 214-17 (2008). https://doi.org/10.1016/j.msea.2006.12.165
  6. H. Wu and W. Zhang, "Fabrication and Properties of $ZrB_2$-SiC-BN Machinable Ceramics," J. Eur. Ceram. Soc., 30 [4] 1035-42 (2010). https://doi.org/10.1016/j.jeurceramsoc.2009.09.022
  7. H. Li, H. Jin, Q. Zhang, J. Yang, and Z. Jin, "SiC/C Machinable Ceramics Surface Hardening by Silicon Infiltration," Scr. Mater., 63 [12] 1177-80 (2010). https://doi.org/10.1016/j.scriptamat.2010.08.031
  8. T. Yamaguchi, "Technology of Characterization to Ceramics (in Jpn.)," Ceramics, 19 [6] 520-9 (1984).
  9. H. A. J. Thomas and R. Stevens, "Aluminium Titanate - A Literature Review," Trans. J. Br. Ceram. Soc, 88 144-51 (1989).
  10. I. J. Kim and C. Zografou, "Thermal Shock Resistance of $Al_2TiO_5$ Ceramics Prepared from Electrofused Powders (in Korean)," J. Kor. Ceram. Soc., 35 [10] 1061-69 (1998).
  11. I. J. Kim, H. B. Lee, and Y. S. Ko, "Application of $Al_2TiO_5$ Ceramics to Automobile Engine (in Korean)," Ceram. Tech., 10 [1] 68-75 (1995).
  12. I. J. Kim, H. B. Lee, and Y. S. Ko, "Application of $Al_2TiO_5$ Ceramics to High Temperature Structural Material Industry (in Korean)," Ceram. Tech., 10 [3] 283-88 (1995).
  13. J. H. Park, W. J. Lee, and I. S. Kim, "$Al_2TiO_5$-machinable Ceramics Made by Reactive Sintering of $Al_2O_3\;and\;TiO_2$ (in Korean)," J. Kor. Ceram. Soc., 47 [6] 498-502 (2010). https://doi.org/10.4191/KCERS.2010.47.6.498
  14. J. H. Park, D. S. Jung, W. J. Lee, and I. S. Kim, "Machinable Ceramics Made by the Reaction Sintering of PSZ, $Al_2O_3\;and\;TiO_2$ (in Korean)," J. Kor. Ceram. Soc., 49 [6] 581-85 (2012). https://doi.org/10.4191/kcers.2012.49.6.581
  15. http://www.sic.saint-gobain.com/sika-tech-technical-ceramics.aspx
  16. S. H. Lee and H. D. Kim, "SiC Sintering Technology Trends (in Korean)," Ceramist, 13 [6] 26-34 (2010).
  17. D. W. Richerson, Modern Ceramic Engineering, 3rd Ed.; pp. 488-90, CRC Press, Boca Raton, FL, 2006.
  18. K. Suzuki and M. Sasaki, "Effects of Sintering Atmosphere on Grain Morphology of Liquid-phase-sintered SiC with $Al_2O_3$ Additions," J. Eur. Ceram. Soc., 25 [9] 1611-18 (2005). https://doi.org/10.1016/j.jeurceramsoc.2004.06.007
  19. Y. I. Lee and Y. W. Kim, "Effect of Processing on Densification of Nanostructured SiC Ceramics Fabricated by Two-step Sintering," J. Mater. Sci., 39 [11] 3801-03 (2004). https://doi.org/10.1023/B:JMSC.0000030743.62306.70
  20. G.-Y. Gil, A. Noviyanto, Y.-H. Han, and D.-H. Yoon, "Prevention of Grain Growth during the Liquid-Phase Assisted Sintering of ${\beta}$-SiC (in Korean)," J. Kor. Ceram. Soc., 47 [6] 485-90 (2010). https://doi.org/10.4191/KCERS.2010.47.6.485
  21. K. Shimoda, T. Hinoki, and A. Koyama, "Effect of Additive Content on Transient Liquid Phase Sintering in SiC Nanopowder Infiltrated $SiC_f/SiC$ Composites," Compos. Sci. Technol., 71 609-15 (2011). https://doi.org/10.1016/j.compscitech.2010.12.014
  22. S. W. Kim, H. J. Lee, and H. L. Lee, "Effects of MgO and $SiO_2$ on Thermal Decomposition of $Al_2TiO_5$ (in Korean)," J. Kor. Ceram. Soc., 36 [4] 425-31 (1999).
  23. S. W. Kim, H. J. Lee, and H. L. Lee, "Effects of Bicomponent Additives on Thermal Decomposition of $Al_2TiO_5$ (in Korean)," J. Kor. Ceram. Soc., 36 [6] 632-39 (1999).
  24. M. Vlasova, M. Kakazey, P. A. M. Aguila, V. Stetsenko, A. Baykov, and S. Lakiza, "Structural and Phase Evolution in Laser Treatment of $Al_2O_3-TiO_2-Y_2O_3$ Powder Mixtures," J. Alloys Compd., in press (2013).
  25. E. S. de Sola, F. J. Serrano, E. Delgado-Pinar, M. M. Reventos, A. I. Pardo, M. A. Kojdecki, H. M. Amigo, and J. Alarcon, "Solubility and Microstructural Development of $TiO_2$-Containing $3Al_2O_32SiO_2\;and\;2Al_2O_3SiO_2$ Mullites Obtained from Single-Phase Gels," J. Eur. Ceram. Soc., 27 2647-54 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.10.015
  26. A. Adamczyk and E. Dlugon, "The FTIR Studies of Gels and Thin Films of $Al_2O_3-TiO_2\;and\;Al_2O_3-TiO_2-SiO_2$ Systems," Spectrochim. Acta, Part A, 89 11-17 (2012). https://doi.org/10.1016/j.saa.2011.12.018
  27. S. G Lee, Y. W. Kim, and M. Mitomo, "Relationship between Microstructure and Fracture Toughness of Toughened Silicon Carbide Ceramics," J. Am. Ceram. Soc., 84 [6] 1347-53 (2001).
  28. M. F. Zawrah and L. Shaw, "Liquid Phase Sintering of SiC in Presence of CaO," Ceram. Int., 30 [5] 721-25 (2004). https://doi.org/10.1016/j.ceramint.2003.07.017
  29. E. Gomez, J. Echeberria, I. Iturriza, and F. Castro, "Liquid Phase Sintering of SiC with Additions of $Y_2O_3,\;Al_2O_3\;and\;SiO_2$," J. Eur. Ceram. Soc., 24 [9] 2895-903 (2004). https://doi.org/10.1016/j.jeurceramsoc.2003.09.002
  30. D. W. Richerson, Modern Ceramic Engineering, 3rd Ed.; pp. 487, CRC Press, Boca Raton, FL, 2006.
  31. S. Bueno, L. Micele, C. Baudin, and G. de Portu, "Reduced Strength Degradation of Alumina-Aluminium Titanate Composite Subjected to Low-velocity Impact Loading," J. Eur. Ceram. Soc., 28 [15] 2923-31 (2008). https://doi.org/10.1016/j.jeurceramsoc.2008.04.024
  32. Z. Li and R. C. Brandt, "Thermal Expansion and Thermal Expansion Anisotropy of SiC Polycrystals," J. Am. Ceram. Soc., 70 [7] 445-48 (1987). https://doi.org/10.1111/j.1151-2916.1987.tb05673.x

Cited by

  1. Fabrication and Machinability of Mullite-ZrO2-Al2TiO5 Ceramics vol.52, pp.6, 2015, https://doi.org/10.4191/kcers.2015.52.6.423