• Title/Summary/Keyword: Mach number

Search Result 677, Processing Time 0.043 seconds

Papers : Flow Noise due to the Impinging Vortex to the Chamfered Forward Step (논문 : 모따기 된 전향계단에 부딪치는 와류에 의한 유동소음)

  • Yu,Gi-Wan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.28-35
    • /
    • 2002
  • In cavity flow, the rectangular step generates so strong sound that many researchers have investigated method to suppress the nois during interaction between vortical flow and rectangular forward step. In this study the flow noise from the vortex motion in two-dimentional low Mach number flow past a forward step with various chamfering angle is calculated numerically. Inviscid incompressible discrete vortex model and matched asymptotic expansion(MAE) theory are applied to obtain the inner flow field and the outer noise field. Both source acoustic pressure and sound intensity are obtained with various chamfering height, chamfering angle and initial vortex position. The pressure amplitude is most suppressed when the chamfering angle is between $15^{\circ}C$ and $30^{\circC}$ at the chamfering length of 30% of the step height.

Effects of Mean Flow and Nozzle Damping on Acoustic Tuning of a Resonator in a Rocket Combustor (로켓엔진 연소기에서 공명기의 음향 동조에 미치는 유동 및 노즐 감쇠 효과에 관한 연구)

  • Sohn, Chae-Hoon;Park, I-Sun;Kim, Seong-Ku
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.3
    • /
    • pp.41-47
    • /
    • 2006
  • Effects of mean flow and nozzle damping on acoustic tuning of a gas-liquid scheme coaxial injector are investigated numerically adopting a linear acoustic analysis. The injector plays a role as a half-wave acoustic resonator for acoustic damping in a combustion chamber of a liquid rocket engine. As Mach number of mean flow in a chamber increases, the resonant frequency of the first tangential mode decreases slightly and the optimum injector tuning length varies negligibly. Nozzle damping affects neither the resonant frequency nor the optimum length. From these numerical results, effects of mean flow and nozzle damping on acoustic tuning of a resonator are negligible. As open area of the injectors increases, the acoustic amplitude decreases, but new injector-coupled modes appear.

An Experimental Study on the Propagation Characteristics of the Impulse Noise from the Exit of a Perforated Pipe (다공관 출구로부터 방사된 충격성 소음의 전파특성에 관한 실험적 연구)

  • Heo, Sung-Wook;Lee, Myeong-Ho;Lee, Dong-Hoon;Hwang, Yoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.3
    • /
    • pp.15-21
    • /
    • 2003
  • This experimental study describes the propagation characteristics of the impulse noise emitted from the exit of a perforated pipe attached to the open end of a simple shock tube facility. The pressure amplitudes and directivities of the impulse wave propagating outside from the exit of pipe with several different configurations are measured and analyzed for the range of the incident weak shock wave Mach number between 1.02 and 1.2. In the experiments. the impulse waves are visualized by a Schlieren optical system for the purpose of understanding their propagation characteristics. The results obtained show that for the near sound field the impulse noise strongly propagates toward the pipe axis, but for the far sound field the impulse noise uniformly propagates toward the omnidirections, indicating that the directivity pattern is almost same regardless of the pipe type. For this non-directivity in the far sound field, it is shown that the perforated pipe has little performance to suppress the impulse noise.

The Numerical Analysis by the Change on the Length-Height Ratio of 2D Cavity in Supersonic Combustor (수치해석을 이용한 초음속 연소기 내의 2차원 Cavity의 종횡비 변화에 대한 혼합특성 비교연구)

  • Seo, Hyung-Seok;Kim, Ki-Su;Jeon, Young-Jin;Byun, Yung-Hwan;Lee, Jae-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.81-86
    • /
    • 2007
  • The air velocity flowing in inner combustion chamber of Scramjet is supersonic and the time of its stay is very short as a few milliseconds. Within this short time, fuel injection, air-fuel mixing, and combustion process should be accomplished. Several methods are suggested for mixing enhancement. Among these, cavity is selected to study for enhancement of mixing. The numerical simulation is performed in the case of freestream Mach number of 2.5 and cavity located in front of fuel jet injection. 8 different sized cavities of length-height ratio were used in order to recognize the effect about cavity size. Also, the case without cavity was analyzed to find the effect of cavity. Used code compared with the result of experiment under identical conditions and it was verified. Through this comparison and verification, mixing enhancement by cavity could be confirmed.

  • PDF

Conceptual Study of an Exhaust Nozzle of an Afterburning Turbofan Engine (후기연소기 장착 터보팬엔진의 배기노즐 개념연구)

  • Choi, Seongman;Myong, Rhoshin;Kim, Woncheol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.3
    • /
    • pp.62-69
    • /
    • 2014
  • This paper presents a preliminary study of a convergent divergent nozzle in an afterburning turbofan engine of a supersonic aircraft engine. In order to design a convergent divergent nozzle, cycle model of a low bypass afterburning turbofan engine of which thrust class is 29,000 lbf at a sea level static condition is established. The cycle analysis at the design point is conducted by Gasturb 12 software and one dimensional gas properties at a downstream direction of the turbine are obtained. The dimension and configuration of an model turbofan engine are derived from take-off operation with wet reheat condition. The off-design cycle calculation is conducted at the all flight envelope on the maximum flight Mach number of 2.0 and maximum flight altitude of 15,000 m.

Development of Test Stand for Altitude Test of Reciprocating Engine (왕복동 엔진의 고도성능시험을 위한 시험장치 개발)

  • Lee, Kyung-Jae;Yang, Inyoung;Kim, Chun Taek;Kim, Dongsik;Baek, Cheulwoo;Yang, Gyaebyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.3
    • /
    • pp.119-127
    • /
    • 2018
  • A test stand for an altitude test of reciprocating engine was designed, manufactured and validated by preliminary tests and simple calculations. The test stand was designed to interface with the altitude turbo-shaft engine test facility of Korea Aerospace Research Institute. Many limiting conditions for altitude test of reciprocating engine were assumed and the test stand was developed to satisfy these limitations. The test stand design was focused especially on the altitude, Mach number and fuel temperature control for reciprocating engine altitude tests with smaller air and fuel flow than those of turbo shaft engines.

Characteristics of the Transverse Fuel Injection into a Supersonic Crossflow using Various Injector Geometries (분사구 형상에 따른 초음속 유동장 내 수직 연료 분사 특성)

  • Kim, Seihwan;Lee, Bok Jik;Jeung, In-Seuck;Lee, Hyoungjin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.3
    • /
    • pp.53-64
    • /
    • 2018
  • In this study, computational simulation was performed to investigate the characteristics of air/fuel mixing according to the shape of the injector exit when the transverse jet was injected into a supersonic flow. Non-reacting flow simulation was conducted with fixed mass flow rate and the same cross-sectional area. To validate the results, free stream Mach number and jet-to-crossflow memetum ratio are set to 3.38 and 1.4, respectively, which is same as the experimental condition. Further, separation region, structure of the under-expended jet, jet penetration height, and flammable region of hydrogen for five different injectors compared.

Numerical Analysis of Rocket Exhaust Plume with Equilibrium Chemistry and Thermal Radiation (화학 평형과 열복사를 포함한 로켓 플룸 유동 해석)

  • Shin Jae-Ryul;Choi Jeong-Yeol;Choi Hwan-Seck
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.1
    • /
    • pp.35-45
    • /
    • 2005
  • Numerical study is carried out to investigate the effects of chemistry and thermal radiation on the rocket plume flow field at various altitudes. Navier-Stokes equations for compressible flows were solved by a fully-implicit TVD code based on the finite volume method. An infinitely fast chemistry module for hydrocarbon mixture with detailed thermo-chemical properties and a thermal radiation module for optically thick media were incorporated with the fluid dynamics code. The plume flow fields of a kerosene-fueled rocket flying at Mach number zero at sea-level, 1.16 at altitude of 5.06 km and 2.90 at 17.34 km were numerically analyzed. Results showed the plume structures at different altitude conditions with the effects of chemistry and radiation. It is understood that the excess temperature by the chemical reactions in the exhaust gas may not be ignored in the view point of propulsion performance and thermal protection of the rocket base, especially at higher altitude conditions.

Transient performance behaviour of the CRW type UAV propulsion system during flight mode transition considering valve operation (CRW형식 무인항공기 추진시스뎀의 밸브 작동을 고려한 비행모드 전환에 따른 천이 성능특성 연구)

  • Kong Changduk;Park Jongha;Yang Sooseok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.3
    • /
    • pp.127-132
    • /
    • 2005
  • In order to investigate transient behavior, of the CRW(Canard Rotor Wing) type UAV(Uninhabited Aerial Vehicle) propulsion system during flight mode transition considering flow control valve operation, the propulsion system was modelled using SIMULINK commercial program. The valve system is to control the gas flow of the rotary duct system and the main duct system, and the analysis was performed with an assumption that the total gas mass flow of the main engine is the same as summation of the rotary duct flow and the main duct flow, and with consideration of valve loss, flow rate and effective area in valve angle variation. The performance analysis was carried out during flight mode transitions from the rotary flight mode to the fixed wing flight mode and vice versa mode at altitude of 1km, flight Mach number 0.1 and maximum engine rpm.

Analysis of Flight Test Result for Control Performance of Smart UAV (스마트무인기의 비행제어 성능관련 비행시험 결과분석)

  • Kang, Young-Shin;Park, Bun-Jin;Cho, Am;Yoo, Chang-Sun;Koo, Sam-Ok
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.22-31
    • /
    • 2013
  • Flight tests on flight control performance of helicopter, conversion and airplane mode for the Smart UAV were completed. Automatic take-off and landing, automatic return home as well as automatic approach to hover were performed in helicopter mode. Climb/descent, left/right turn using speed and altitude hold mode were performed in each $10^{\circ}$ tilt angle in conversion mode. The rotor speed in airplane mode was reduced to 82% from 98% RPM in order to increase rotor efficiency with reducing Mach number at tip of rotors. It reached to the designed maximum speed, $V_{TAS}$=440 km/h at 3 km altitude. This paper presents the flight test result on full envelopment of Smart UAV. Detailed test plan and test data on control performance were also presented to prove that all data meets the flying qualities requirement.