• Title/Summary/Keyword: MVTec AD

Search Result 6, Processing Time 0.022 seconds

Image Anomaly Detection Using MLP-Mixer (MLP-Mixer를 이용한 이미지 이상탐지)

  • Hwang, Ju-hyo;Jin, Kyo-hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.104-107
    • /
    • 2022
  • autoencoder deep learning model has excellent ability to restore abnormal data to normal data, so it is not appropriate for anomaly detection. In addition, the Inpainting method, which is a method of restoring hidden data after masking (masking) a part of the data, has a problem in that the restoring ability is poor for noisy images. In this paper, we use a method of modifying and improving the MLP-Mixer model to mask the image at a certain ratio and to reconstruct the image by delivering compressed information of the masked image to the model. After constructing a model learned with normal data from the MVTec AD dataset, a reconstruction error was obtained by inputting normal and abnormal images, respectively, and anomaly detection was performed through this. As a result of the performance evaluation, it was found that the proposed method has superior anomaly detection performance compared to the existing method.

  • PDF

Design of Facility Crack Detection Model using Transfer Learning (전이학습을 활용한 시설물 균열 탐지 모델 설계)

  • Kim, Jun-Yeong;Park, Jun;Park, Sung Wook;Lee, Han-Sung;Jung, Se-Hoon;Sim, Cun-Bo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.827-829
    • /
    • 2021
  • 현대사회의 시설물 중 다수가 콘크리트를 사용하여 건설되었고, 재료적 성질로 인해 균열, 박락, 백태 등의 손상이 발생하고 있고 시설물 관리가 요구되고 있다. 하지만, 현재 시설물 관리는 사람의 육안 점검을 정기적으로 수행하고 있으나, 높은 시설물이나 맨눈으로 확인할 수 없는 시설물의 경우 관리가 어렵다. 이에 본 논문에서는 다양한 영상장비를 활용해 시설물의 이미지에서 균열을 분류하는 알고리즘을 제안한다. 균열 분류 알고리즘은 산업 이상 감지 데이터 세트인 MVTec AD 데이터 세트를 사전 학습하고 L2 auto-encoder를 사용하여 균열을 분류한다. MVTec AD 데이터 세트를 사전학습시킴으로써 균열, 박락, 백태 등의 특징을 학습시킬 수 있을 것으로 기대한다.

Performance Analysis of Anomaly Area Segmentation in Industrial Products Based on Self-Attention Deep Learning Model (Self-Attention 딥러닝 모델 기반 산업 제품의 이상 영역 분할 성능 분석)

  • Changjoon Park;Namjung Kim;Junhwi Park;Jaehyun Lee;Jeonghwan Gwak
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.45-46
    • /
    • 2024
  • 본 논문에서는 Self-Attention 기반 딥러닝 기법인 Dense Prediction Transformer(DPT) 모델을 MVTec Anomaly Detection(MVTec AD) 데이터셋에 적용하여 실제 산업 제품 이미지 내 이상 부분을 분할하는 연구를 진행하였다. DPT 모델의 적용을 통해 기존 Convolutional Neural Network(CNN) 기반 이상 탐지기법의 한계점인 지역적 Feature 추출 및 고정된 수용영역으로 인한 문제를 개선하였으며, 실제 산업 제품 데이터에서의 이상 분할 시 기존 주력 기법인 U-Net의 구조를 적용한 최고 성능의 모델보다 1.14%만큼의 성능 향상을 보임에 따라 Self-Attention 기반 딥러닝 기법의 적용이 산업 제품 이상 분할에 효과적임을 입증하였다.

  • PDF

Enhanced Deep Feature Reconstruction : Texture Defect Detection and Segmentation through Preservation of Multi-scale Features (개선된 Deep Feature Reconstruction : 다중 스케일 특징의 보존을 통한 텍스쳐 결함 감지 및 분할)

  • Jongwook Si;Sungyoung Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.369-377
    • /
    • 2023
  • In the industrial manufacturing sector, quality control is pivotal for minimizing defect rates; inadequate management can result in additional costs and production delays. This study underscores the significance of detecting texture defects in manufactured goods and proposes a more precise defect detection technique. While the DFR(Deep Feature Reconstruction) model adopted an approach based on feature map amalgamation and reconstruction, it had inherent limitations. Consequently, we incorporated a new loss function using statistical methodologies, integrated a skip connection structure, and conducted parameter tuning to overcome constraints. When this enhanced model was applied to the texture category of the MVTec-AD dataset, it recorded a 2.3% higher Defect Segmentation AUC compared to previous methods, and the overall defect detection performance was improved. These findings attest to the significant contribution of the proposed method in defect detection through the reconstruction of feature map combinations.

gMLP-based Self-Supervised Learning Anomaly Detection using a Simple Synthetic Data Generation Method (단순한 합성데이터 생성 방식을 활용한 gMLP 기반 자기 지도 학습 이상탐지 기법)

  • Ju-Hyo, Hwang;Kyo-Hong, Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.27 no.1
    • /
    • pp.8-14
    • /
    • 2023
  • The existing self-supervised learning-based CutPaste generated synthetic data by cutting and attaching specific patches from normal images and then performed anomaly detection. However, this method has a problem in that there is a clear difference in the boundary of the patch. NSA for solving these problems have achieved higher anomaly detection performance by generating natural synthetic data through Poisson Blending. However, NSA has the disadvantage of having many hyperparameters that need to be adjusted for each class. In this paper, synthetic data similar to normal were generated by a simple method of making the size of the synthetic patch very small. At this time, since the patches are so locally synthesized, models that learn local features can easily overfit synthetic data. Therefore, we performed anomaly detection using gMLP, which learns global features, and even with simple synthesis methods, we were able to achieve higher performance than conventional self-supervised learning techniques.

Effective Classification Method of Hierarchical CNN for Multi-Class Outlier Detection (다중 클래스 이상치 탐지를 위한 계층 CNN의 효과적인 클래스 분할 방법)

  • Kim, Jee-Hyun;Lee, Seyoung;Kim, Yerim;Ahn, Seo-Yeong;Park, Saerom
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.81-84
    • /
    • 2022
  • 제조 산업에서의 이상치 검출은 생산품의 품질과 운영비용을 절감하기 위한 중요한 요소로 최근 딥러닝을 사용하여 자동화되고 있다. 이상치 검출을 위한 딥러닝 기법에는 CNN이 있으며, CNN을 계층적으로 구성할 경우 단일 CNN 모델에 비해 상대적으로 성능의 향상을 보일 수 있다는 것이 많은 선행 연구에서 나타났다. 이에 MVTec-AD 데이터셋을 이용하여 계층 CNN이 다중 클래스 이상치 판별 문제에 대해 효과적인지를 탐구하고자 하였다. 실험 결과 단일 CNN의 정확도는 0.7715, 계층 CNN의 정확도는 0.7838로 다중 클래스 이상치 판별 문제에 있어 계층 CNN 방식 접근이 다중 클래스 이상치 탐지 문제에서 알고리즘의 성능을 향상할 수 있음을 확인할 수 있었다. 계층 CNN은 모델과 파라미터의 개수와 리소스의 사용이 단일 CNN에 비하여 기하급수적으로 증가한다는 단점이 존재한다. 이에 계층 CNN의 장점을 유지하며 사용 리소스를 절약하고자 하였고 K-means, GMM, 계층적 클러스터링 알고리즘을 통해 제작한 새로운 클래스를 이용해 계층 CNN을 구성하여 각각 정확도 0.7930, 0.7891, 0.7936의 결과를 얻을 수 있었다. 이를 통해 Clustering 알고리즘을 사용하여 적절히 물체를 분류할 경우 물체에 따른 개별 상태 판단 모델을 제작하는 것과 비슷하거나 더 좋은 성능을 내며 리소스 사용을 줄일 수 있음을 확인할 수 있었다.

  • PDF