• Title/Summary/Keyword: MTT(Multi-Target Tracking)

Search Result 10, Processing Time 0.023 seconds

A Multi-target Tracking Algorithm for Application to Adaptive Cruise Control

  • Moon Il-ki;Yi Kyongsu;Cavency Derek;Hedrick J. Karl
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1742-1752
    • /
    • 2005
  • This paper presents a Multiple Target Tracking (MTT) Adaptive Cruise Control (ACC) system which consists of three parts; a multi-model-based multi-target state estimator, a primary vehicular target determination algorithm, and a single-target adaptive cruise control algorithm. Three motion models, which are validated using simulated and experimental data, are adopted to distinguish large lateral motions from longitudinally excited motions. The improvement in the state estimation performance when using three models is verified in target tracking simulations. However, the performance and safety benefits of a multi-model-based MTT-ACC system is investigated via simulations using real driving radar sensor data. The MTT-ACC system is tested under lane changing situations to examine how much the system performance is improved when multiple models are incorporated. Simulation results show system response that is more realistic and reflective of actual human driving behavior.

Multi-Vehicle Tracking Adaptive Cruise Control (다차량 추종 적응순항제어)

  • Moon Il ki;Yi Kyongsu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1 s.232
    • /
    • pp.139-144
    • /
    • 2005
  • A vehicle cruise control algorithm using an Interacting Multiple Model (IMM)-based Multi-Target Tracking (MTT) method has been presented in this paper. The vehicle cruise control algorithm consists of three parts; track estimator using IMM-Probabilistic Data Association Filter (PDAF), a primary target vehicle determination algorithm and a single-target adaptive cruise control algorithm. Three motion models; uniform motion, lane-change motion and acceleration motion. have been adopted to distinguish large lateral motions from longitudinal motions. The models have been validated using simulated and experimental data. The improvement in the state estimation performance when using three models is verified in target tracking simulations. The performance and safety benefits of a multi-model-based MTT-ACC system is investigated via simulations using real driving radar sensor data. These simulations show system response that is more realistic and reflective of actual human driving behavior.

Vehicle Cruise Control with a Multi-model Multi-target Tracking Algorithm (복합모델 다차량 추종 기법을 이용한 차량 주행 제어)

  • Moon, Il-Ki;Yi, Kyong-Su
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.696-701
    • /
    • 2004
  • A vehicle cruise control algorithm using an Interacting Multiple Model (IMM)-based Multi-Target Tracking (MTT) method has been presented in this paper. The vehicle cruise control algorithm consists of three parts; track estimator using IMM-Probabilistic Data Association Filter (PDAF), a primary target vehicle determination algorithm and a single-target adaptive cruise control algorithm. Three motion models; uniform motion, lane-change motion and acceleration motion, have been adopted to distinguish large lateral motions from longitudinal motions. The models have been validated using simulated and experimental data. The improvement in the state estimation performance when using three models is verified in target tracking simulations. The performance and safety benefits of a multi-model-based MTT-ACC system is investigated via simulations using real driving radar sensor data. These simulations show system response that is more realistic and reflective of actual human driving behavior.

  • PDF

A Study of Automatic Multi-Target Detection and Tracking Algorithm using Highest Probability Data Association in a Cluttered Environment (클러터가 존재하는 환경에서의 HPDA를 이용한 다중 표적 자동 탐지 및 추적 알고리듬 연구)

  • Kim, Da-Soul;Song, Taek-Lyul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1826-1835
    • /
    • 2007
  • In this paper, we present a new approach for automatic detection and tracking for multiple targets. We combine a highest probability data association(HPDA) algorithm for target detection with a particle filter for multiple target tracking. The proposed approach evaluates the probabilities of one-to-one assignments of measurement-to-track and the measurement with the highest probability is selected to be target- originated, and the measurement is used for probabilistic weight update of particle filtering. The performance of the proposed algorithm for target tracking in clutter is compared with the existing clustering algorithm and the sequential monte carlo method for probability hypothesis density(SMC PHD) algorithm for multi-target detection and tracking. Computer simulation studies demonstrate that the HPDA algorithm is robust in performing automatic detection and tracking for multiple targets even though the environment is hostile in terms of high clutter density and low target detection probability.

Adaptive Data Association for Multi-Target Tracking using Relaxation

  • Lee, Yang-Weon;Hong Jeong
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.2
    • /
    • pp.267-273
    • /
    • 1998
  • This paper introduces an adaptive algorithm determining the measurement-track association problem in multi-target tracking(MTT). We model the target and measurement relationships with mean field theory and then define a MAP estimate for the optimal association. Based on this model, we introduce an energy function defined over the measurement space, that incorporates the natural constraints for target tracking. To find the minimizer of the energy function, we derived a new adaptive algorithm by introducing the Lagrange multipliers and local dual theory. Through the experiments, we show that this algorithm is stable and works well in general environments. Also the advantages of the new algorithm over other algorithms are discussed.

  • PDF

A Study on the Optimal Data Association in Multi-Target Tracking by Hopfield Neural Network (홉필드 신경망을 이용한 다중 표적 추적이 데이터 결합 최적화에 대한 연구)

  • Lee, Yang-Weon;Jeong, Hong
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.6
    • /
    • pp.186-197
    • /
    • 1996
  • A multiple target tracking (MTT) problem is to track a number of targets in clusttered environment, where measurements may contain uncertainties of measurement origin due to clutter, missed detection, or other targets, as well as measurement noise errors. Hence, an MTT filter should be introduced to resolve this problem. In this paper, a neural network is rpoposed as an MTT filter.

  • PDF

A Study of LM-IHPDA Algorithm for Multi-Target Tracking in Infrared Image Sequences (적외선 영상에서 다수표적추적을 위한 LM-IHPDA 알고리듬 연구)

  • Kim, Tae Han;Choi, Byung In;Kim, Ji Eun;Yang, Yu Kyung;Song, Taek Lyul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.3
    • /
    • pp.209-218
    • /
    • 2013
  • Military surveillance systems with electro-optical sensors can be used to track a number of targets efficiently and reliably. In MTT (Multi-Target Tracking), joint events in which different tracks share the same measurements may occur. Measurement-to-track assignment are computationally challenging because of the number of operations increases exponentially with number of tracks and number of measurements. IHPDA (Integrated Highest Probability Data Association) based on a 2D-Assignment technique can find an optimal solution for measurement to track one-to-one assignments for complex environments. In this paper, LM-IHPDA (Linear Multi-Target IHPDA) which does not need to form all feasible joint events of association and thus the computational load is linear in the number of tracks and the number of measurements. Simulation studies illustrate the effectiveness of this approach in an infrared image environment.

An Adaptive Data Association Scheme for Multi-Target Tracking in Radar

  • Lee, Yang-Weon;Na, Hyun-Shik;Jeong, Hong
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.1259-1262
    • /
    • 1998
  • This paper introduced a scheme for finding the relationships between the measurements and tracks in multi-target tracking (MTT). We considered the relationships between targets and measurements as MRF and assumed a priori as a Gibbs distribution. An energy function is defined over the measurement space, as accurately as possible so that it may incorporate most of the important natural constraints. To find the minimizer of the energy function, we derived a new equation of closed form.

  • PDF

Multi-target Data Association Filter Based on Order Statistics for Millimeter-wave Automotive Radar (밀리미터파 대역 차량용 레이더를 위한 순서통계 기법을 이용한 다중표적의 데이터 연관 필터)

  • Lee, Moon-Sik;Kim, Yong-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.5
    • /
    • pp.94-104
    • /
    • 2000
  • The accuracy and reliability of the target tracking is very critical issue in the design of automotive collision warning radar A significant problem in multi-target tracking (MTT) is the target-to-measurement data association If an incorrect measurement is associated with a target, the target could diverge the track and be prematurely terminated or cause other targets to also diverge the track. Most methods for target-to-measurement data association tend to coalesce neighboring targets Therefore, many algorithms have been developed to solve this data association problem. In this paper, a new multi-target data association method based on order statistics is described The new approaches. called the order statistics probabilistic data association (OSPDA) and the order statistics joint probabilistic data association (OSJPDA), are formulated using the association probabilities of the probabilistic data association (PDA) and the joint probabilistic data association (JPDA) filters, respectively Using the decision logic. an optimal or near optimal target-to-measurement data association is made A computer simulation of the proposed method in a heavy cluttered condition is given, including a comparison With the nearest-neighbor CNN). the PDA, and the JPDA filters, Simulation results show that the performances of the OSPDA filter and the OSJPDA filter are superior to those of the PDA filter and the JPDA filter in terms of tracking accuracy about 18% and 19%, respectively In addition, the proposed method is implemented using a developed digital signal processing (DSP) board which can be interfaced with the engine control unit (ECU) of car engine and with the d?xer through the controller area network (CAN)

  • PDF

MCMC Particle Filter based Multiple Preceeding Vehicle Tracking System for Intelligent Vehicle (MCMC 기반 파티클 필터를 이용한 지능형 자동차의 다수 전방 차량 추적 시스템)

  • Choi, Baehoon;An, Jhonghyun;Cho, Minho;Kim, Euntai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.2
    • /
    • pp.186-190
    • /
    • 2015
  • Intelligent vehicle plans motion and navigate itself based on the surrounding environment perception. Hence, the precise environment recognition is an essential part of self-driving vehicle. There exist many vulnerable road users (e.g. vehicle, pedestrians) on vehicular driving environment, the vehicle must percept all the dynamic obstacles accurately for safety. In this paper, we propose an multiple vehicle tracking algorithm using microwave radar. Our proposed system includes various special features. First, exceptional radar measurement model for vehicle, concentrated on the corner, is described by mixture density network (MDN), and applied to particle filter weighting. Also, to conquer the curse of dimensionality of particle filter and estimate the time-varying number of multi-target states, reversible jump markov chain monte carlo (RJMCMC) is used to sampling step of the proposed algorithm. The robustness of the proposed algorithm is demonstrated through several computer simulations.