대한원격탐사학회 1999년도 Proceedings of International Symposium on Remote Sensing
/
pp.349-354
/
1999
Electro-Optical Camera (EOC) is the main payload of the KOMPSAT-1 satellite to perform the mission of cartography that builds up a digital map of Korean territory including a digital terrain elevation map. This paper discusses the issues of the digital image simulation of EOC for the generation of EOC simulated scene as taken by EOC at 685km altitude on orbit. For the purpose, simulation work has been performed with the sensor models of EOC and the satellite platform motions models through image chain analysis from the illumination source (Sun) to a simulated image output in digital number. MODTRAN fur radiance calculation, MTF models of optics, detector and motions of EOC for system point spread function (PSF), and signal chain equations for digital number output are described. Several noise models of EOC are also considered. The final output is the EOC simulated image in digital number. The simulation technique can be used in several phase of a spaceborne electro-optical system development project, feasibility study phase, design, manufacturing, test phases, ground image processing phases, and so on.
극소전자 디바이스의 고집적화에 의해 박막배선의 선폭은 0.5$mu extrm{m}$ 이하로 축소되고 있고 상대적으로 높은 전류밀도가 흐르게 된다. 높은 전류밀도하에서는 현재 일반적으로 사용되고 있는 Al을 기본으로 하는 박막배선에서의 electromigration에 의한 결함 발생 그리고 비교적 낮은 전기전도도가 심각한 문제점으로 제기된다. 본 연구에서는 Al과 고전기전도도 물질인 Ag, Cu, 그리고 Au 박막배선에 대해 electromigration에 대한 저항성, 즉 activation energy를 측정 비교함으로써 차세대 극소전자 디바이스를 위한 박막배선재료로서의 가능성을 알아보고자 한다. Electromigration test 및 activation energy를 구하기 위해 순수 Ag, Cu, Al, Au 박막배선을 0.05$\mu\textrm{m}$ 두께, 100$\mu\textrm{m}$ 선폭, 그리고 5000$\mu\textrm{m}$ 길이로 SiO2 열산화막 처리된 pp-Si(100) 기판 위에 진공 증착시켰다. 가속화 실험을 위해 인가된 d.c. 전류밀도는 2$\times$106A/$ extrm{cm}^2$ 이었고, Al과 Au에서는 6$\times$106A/$\textrm{cm}^2$이었다. 실온에서 24$0^{\circ}C$까지의 온도범위에서 d.c.인가후의 저항변화를 측정하여 Median-Time-to-Failure(MTF)를 구한 후 Black 방정식을 이용하여 activation energy를 측정하였다. Activation energy는 Cu가 1.34eV로서 가장 높게 나타났고 Au가 1.01eV, Al이 0.66eV, Ag가 0.29eV의 순으로 측정되었다. 따라서 Cu와 Au 박막배선의 경우 Al보다 electromigration에 대한 저항력이 강한 고활성화에너지 특성을 갖는 고전기전도도 재료로서 차세대 극소전자 디바이스를 위한 대체 박막배선재료로서의 가능성을 보인다.
이 연구는 별 관측을 통해 점 퍼짐 함수(PSF)를 측정하고 나이퀴스트 주파수에서 변조 전달 함수(MTF)을 계산하여 주파수 영역에서 저궤도 광학 위성의 영상품질 평가방법을 도출하였다. 가상 별 영상을 생성하고 IRAF로 2차원의 점 퍼짐 함수를 얻었고 MATLAB으로 점 퍼짐 함수를 2차원 푸리에 변환하여 변조 전달함수를 계산하였다. 공간 영역에서는 점 퍼짐 함수의 모양을 통해서도 영상품질을 검증할 수 있다. Along/Across-Track의 모양이 일치하고 중심에서 좌우대칭이며 델타함수에 가까울수록 좋은 품질의 영상을 의미한다. Along/Across-Track의 점 퍼짐 함수 모양차이는 Line Rate나 Time Delay and Integration(TDI)의 오차에서 기인한다. 별을 점광원으로 본다면 점 퍼짐 함수를 정의하기 쉽고 Along/Across 방향을 동시에 측정 가능하다는 장점이 있다. 궤도상에서 별을 관측하는 것은 지상을 관측하는 것보다 대기 환경의 효과가 크지 않기 때문에 영상 품질 평가에 유리하다. Yaw Steering이나 Nadir Pointing과 같은 자세제어의 효과를 배제할 수 있으므로 자세제어의 효과가 상당 부분 제거된 영상품질을 분석할 수 있다. 지상관측시간이나 배터리 충전시간이 아닌 지구 본영에서 별을 관측하므로 임무에 방해받지 않는다. 지상관측과 같은 효과를 내고 TDI를 사용하는 환경을 구현하기위해 Line Rate를 고려한 자세 기동 방법에 대해 연구하였다. 큰 각도의 자세 기동이 예상되어 쿼터니안을 이용하여 Inertial Pointing하도록 자세 제어하였고, 자세 Slew Rate 구속조건 하에서 제어가 필요하다.
International Journal of Aeronautical and Space Sciences
/
제13권1호
/
pp.64-73
/
2012
Pointing stability of high precision observation satellites must satisfy the stringent requirements to perform at a designed level. As even a small vibrational disturbance can result in severe degradation of the optical performance, the effects of inorbit vibrational environment on the performance of optical payload must be predicted and analyzed in the design phase in order to ensure that the requirements imposed on the payload are fully met. In this paper, an integrated framework for the evaluation of the performance of optical payloads is developed. The developed simulation tool comprises of the reaction wheel induced disturbance model, state space model of a structure in modal form and Cassegrain reflector model. The performance degradation of the optical system due to jitter is expressed by using modulation transfer function (MTF) and image simulation. Moreover, vibration isolator model is also added to show the effectiveness of using a vibration isolator for the elimination of the effects of jitter in the acquisition of an image.
초박형 라이트필드 카메라 시스템은 이미지 센서 위에 렌즈 어레이를 부착하는 방식으로 만들어진다. 이러한 초박형 라이트필드 카메라는 하나의 이미지 센서를 여러 개의 sub-aperture가 나눠쓰는 방식으로 되어있어 개별 이미지의 분해능이 낮으며, sub-aperture 이미지들을 융합해 추가적인 분해능 향상이 수행되어야 한다. 본 연구에서는 초박형 라이트필드 카메라 시스템을 개발했으며, 개발된 카메라 시스템을 위한 실시간 분해능 향상 알고리즘을 개발, 실험을 통해 검증했다. 개발된 초박형 라이트필드 카메라는 두께 2mm, 24개(6×4)의 551×551 해상도의 sub-aperture로 구성되어 있으며, 임베디드 컴퓨팅 보드를 사용해 휴대가 가능하도록 제작되었다. 실시간 분해능 향상 알고리즘은 임베디드 컴퓨팅 보드의 GPU에서 병렬처리를 통해 라플라시안 피라미드 기반의 이미지 융합 알고리즘을 수행한다. 실험을 통해 검증한 결과로, 개발 시스템은 MTF50값이 평균 35% 정도 개선되었으며, 10.65fps의 처리속도로 실시간 처리가 가능함을 확인했다.
In order to test the recognition ability and accuracy of a target imaging simulator under the irradiation of solar stray light in a laboratory environment, it needs to be fixed on a five-axis turntable during a hardware-in-the-loop simulation test, so the optical system of the simulator should have a long exit pupil distance. This article adopts a secondary imaging method to design a projection optical system suitable for thin-film-transistor liquid crystal displays. The exit pupil distance of the entire optical system is 1,000 mm, and the final optimization results in the 400 nm-850 nm band show that the modulation transfer function (MTF) of the optical system is greater than 0.8 at the cutoff frequency of 72 lp/mm, and the distortion of each field of view of the system is less than 0.04%. Combined with the design results of the optical system, TracePro software was used to model the optical system, and the simulation of the target imaging simulator at the magnitude of -1 to +6 Mv was analyzed and verified. The magnitude error is less than 0.2 Mv, and the irradiance uniformity of the exit pupil surface is greater than 90%, which meets the requirements of the target imaging simulator.
A compact imaging spectrometer (COMIS) is currently under development for use in the STSAT3 microsatellite. COMIS images the Earth's surface and atmosphere with ground sampling distances of ${\sim}30m$ in the $18{\sim}62$ spectral bands ($4.0{\sim}1.05{\mu}m$) for the nadir looking at an altitude of 700 km. COMIS has an imaging telescope and an imaging spectrometer box into which three electronics PCBs are embedded. These are designed into a single assembly with dimensions of 35(L) $\times$ 20(W) $\times$ 12(H) $cm^3$ and a mass of 4.3 kg. Optomechanical design efforts are focused on manufacturing ease, alignment, assembly, testing and improved robustness in space environments. Finite element analysis demonstrates that COMIS will survive in launch and space environments and perform the system modulation transfer function (MTF) in excess of 0.29 at the Nyquist frequency of the CCD detector (38.5 lines-per-mm).
This paper presents the design and evaluation of the optical zoom system for an LWIR camera. The 12.8operating wavelength range of this system is from $7.7{\mu}m$ to $12.8{\mu}m$. Through a paraxial design and optimization process, we have obtained the extended four-group inner-focus zoom system with focal lengths of 10 to 100 mm, which consists of the six lenses including four aspheric surfaces and two diffractive surfaces. The diffractive lenses were used to balance the higher-order aberrations, and its diffraction properties were evaluated by scalar diffraction theory. We have calculated the polychromatic integrated diffraction efficiency and the MTF drop generated by background noise. The f-number of the zoom system is F/1.4 at all positions. Fields of view are given by $51.28^{\circ}{\times}38.46^{\circ}$ at wide field and $5.50^{\circ}{\times}4.12^{\circ}$ at narrow field positions. In conclusion, this design procedure results in a $10{\times}$ compact zoom lens system useful for an LWIR camera.
Kim, Jai-Soon;Yoon, Jin-Kyung;Lee, Ho-Chan;Lee, Jai-Hyung;Kim, Hye-Kyung;Lee, Seung-Churl;Ahn, Keun-Ok
Journal of the Optical Society of Korea
/
제8권4호
/
pp.174-181
/
2004
Various kinds of systems, that can do target recognition and position detection simultaneously by using infrared sensing detectors, have been developed. In this paper, the detection system TRSS (Thermal target Recognition by Spiral Scanning) adopts linear array shaped uncooled IR detector and uses spiral type fast scanning method for relative position detection of target objects, which radiate an IR region wavelength spectrum. It can detect thermal energy radiating from a 9 m-size target object as far as 200 m distance. And the maximum field of a detector is fully filled with the same size of target object at the minimum approaching distance 50 m. We investigate two types of lens systems. One is a singlet lens and the other is a doublet lens system. Every system includes one aspheric surface and free positioned aperture stop. Many designs of F/1.5 system with ${\pm}5.2^{\circ}$ field at the Efl=20, 30 mm conditions for single element and double elements lens system respectively are compared in their resolution performance [MTF] according to the aspheric surface and stop position changing on their optimization process. Optimum design is established including mechanical boundary conditions and manufacturing considerations.
In this paper a catadioptric laser-irradiation-precision test system is designed, to achieve a high-precision laser-irradiation-accuracy test. In this system, we adopt the method of imaging the entire target surface at a certain distance to realize the measurement of laser-irradiation precision. The method possesses the advantages of convenient operation, high sensitivity, and good stability. To meet the test accuracy requirement of 100 mm/km (0.01%), the coma, field curvature, and distortion over the entire field of view should be eliminated from the optical system's design. Taking into account the whole length of the tube and the influence of stray light on the structure type, a catadioptric system with a hood added near the primary imaging surface is designed. After optimization using the ZEMAX software, the modulation transfer function (MTF) of the designed optical system is 0.6 at 30 lp/mm, the full-field-of-view distortion is better than 0.18%, and the energy concentration in the 10-㎛-radius surrounding circle reaches about 90%. The illumination-accuracy test results show that the measurement accuracy of the radiation hit rate is better than 50 mm when the test distance is 1 km, which is better than the requirement of 100 mm/km for the laser-irradiation-accuracy test.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.