• Title/Summary/Keyword: MTA cement

Search Result 44, Processing Time 0.018 seconds

Biocompatibility of bioaggregate cement on human pulp and periodontal ligament (PDL) derived cells (사람의 치수 및 치주인대 세포에 대한 Bioaggregate 시멘트의 생체적합성에 대한 연구)

  • Chung, Choo-Ryung;Kim, Eui-Seong;Shin, Su-Jung
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.6
    • /
    • pp.473-478
    • /
    • 2010
  • Objectives: This study was performed to investigate the biocompatibility of newly introduced Bioaggregate on human pulp and PDL cells. Materials and Methods: Cells were collected from human pulp and PDL tissue of extracted premolars. Cell culture plate was coated either with Bioaggregate or white MTA, then the same number of cells were poured to cell culture dishes. Cell attachment and growth was examined under a phase microscope after 1,3 and 7 days of seeding. Cell viability was measured and the data was analyzed using Student t-test and one way ANOVA. Results: Both types of cells used in this study were well attached and grew healthy on Bioaggregate and MTA coated culture dishes. No cell inhibition zone was observed in Bioaggregate group. There was no statistical difference of viable cells between bioaggreagte and MTA groups. Conclusions: Bioaggregate appeared to be biocompatible compared with white MTA on human pulp and PDL cells.

pH, Ion Release Capability, and Solubility Value of Premixed Mineral Trioxide Aggregates (Premixed MTA제재의 pH, 이온 유리 정도, 용해도)

  • Seolah, Back;YuJi, Jang;Junghwan, Lee;Joonhaeng, Lee;Jisun, Shin;Jongbin, Kim;Miran, Han;JongSoo, Kim
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.49 no.4
    • /
    • pp.379-391
    • /
    • 2022
  • The current study aimed to compare the pH, solubility value, and ion release capability of premixed mineral trioxide aggregates (MTAs) versus conventional pulp capping materials before and after setting. The following materials were used: resin-modified calcium silicate cement (TheraCal LC®, TLC), resin-modified calcium hydroxide cement (Ultra-BlendTM plus, UBP), and 2 kinds of premixed MTA (Endocem MTA® premixed regular [EMPR] and Well-RootTM PT [WRP]). The specimens of each material were prepared before and after setting and were immersed in distilled water. The materials' pH and solubility value were assessed. Next, three kinds of ion (calcium, sulfide, and strontium) released by pulp capping materials were evaluated via inductively coupled plasma atomic emission spectrometry. In the after-setting group, the pH of TLC and UBP decreased. However, the pH of the premixed MTAs increased with time. TLC released a higher concentration of strontium ion compared with the other materials. Meanwhile, EMPR released a significantly high concentration of sulfide ion (p < 0.05). In the after-setting group, the 2 kinds of premixed MTAs released a significantly higher concentration of calcium ion compared with the other materials (p < 0.05). In the after-setting group, EMPR had a significantly low solubility value (p < 0.05). The Kruskal-Wallis test, followed by the Mann-Whitney U test with Bonferroni correction, was used in statistical analysis. In conclusion, resin-modified calcium silicate cement, modified calcium hydroxide cement, and the 2 kinds of premixed MTAs had an alkaline pH and low solubility value and they released various concentrations of ions after setting.

A micro-computed tomography evaluation of voids using calcium silicate-based materials in teeth with simulated internal root resorption

  • Tek, Vildan;Turker, Sevinc Aktemur
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.1
    • /
    • pp.5.1-5.8
    • /
    • 2020
  • Objectives: The obturation quality of MTA, Biodentine, Total Fill BC root canal sealer (RCS), and warm gutta-percha (WGP) in teeth with simulated internal root resorption (IRR) was evaluated by using micro-computed tomography. Materials and Methods: Standardized IRR cavities were created using 40 extracted maxillary central incisor teeth and randomly assigned into 4 groups (n = 10). IRR cavities were filled with MTA, Biodentine, Total Fill BC RCS (bulk-fill form) and WGP + Total Fill BC RCS. Percentage of voids between resorptive cavity walls and obturation material (external void), and inside the filling materials (internal voids) were measured. Results: Total Fill BC sealer in the bulk-fill form presented significantly highest values of external and internal void percentages (p < 0.05). Biodentine showed a significantly lowest external void percentage (p < 0.05). WGP + Total Fill BC RCS presented significantly lower values of internal void percentages than all groups (p < 0.05), except Biodentine (p > 0.05). Conclusion: None of the filling materials were created void-free obturation in resorption cavities. Biodentine may favor its application in teeth with IRR over Angelus MTA and bulkfill form of Total Fill BC.

Effects of different calcium-silicate based materials on fracture resistance of immature permanent teeth with replacement root resorption and osteoclastogenesis

  • Gabriela Leite de Souza;Gabrielle Alves Nunes Freitas;Maria Tereza Hordones Ribeiro;Nelly Xiomara Alvarado Lemus;Carlos Jose Soares;Camilla Christian Gomes Moura
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.2
    • /
    • pp.21.1-21.15
    • /
    • 2023
  • Objectives: This study evaluated the effects of Biodentine (BD), Bio-C Repair (BCR), and mineral trioxide aggregate (MTA) plug on the fracture resistance of simulated immature teeth with replacement root resorption (RRR) and in vitro-induced osteoclastogenesis. Materials and Methods: Sixty bovine incisors simulating immature teeth and RRR were divided into 5 groups: BD and BCR groups, with samples completely filled with the respective materials; MTA group, which utilized a 3-mm apical MTA plug; RRR group, which received no root canal filling; and normal periodontal ligament (PL) group, which had no RRR and no root canal filling. All the teeth underwent cycling loading, and compression strength testing was performed using a universal testing machine. RAW 264.7 macrophages were treated with 1:16 extracts of BD, BCR, and MTA containing receptor activator of nuclear factor-kappa B ligand (RANKL) for 5 days. RANKL-induced osteoclast differentiation was assessed by staining with tartrate-resistant acid phosphatase. The fracture load and osteoclast number were analyzed using 1-way ANOVA and Tukey's test (α = 0.05). Results: No significant difference in fracture resistance was observed among the groups (p > 0.05). All materials similarly inhibited osteoclastogenesis (p > 0.05), except for BCR, which led to a lower percentage of osteoclasts than did MTA (p < 0.0001). Conclusions: The treatment options for non-vital immature teeth with RRR did not strengthen the teeth and promoted a similar resistance to fractures in all cases. BD, MTA, and BCR showed inhibitory effects on osteoclast differentiation, with BCR yielding improved results compared to the other materials.

Comparative analysis of bond strength to root dentin and compression of bioceramic cements used in regenerative endodontic procedures

  • Maykely Naara Morais Rodrigues;Kely Firmino Bruno;Ana Helena Goncalves de Alencar;Julyana Dumas Santos Silva;Patricia Correia de Siqueira;Daniel de Almeida Decurcio;Carlos Estrela
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.4
    • /
    • pp.59.1-59.14
    • /
    • 2021
  • Objectives: This study compared the Biodentine, MTA Repair HP, and Bio-C Repair bioceramics in terms of bond strength to dentin, failure mode, and compression. Materials and Methods: Fifty-four slices obtained from the cervical third of 18 single-rooted human mandibular premolars were randomly distributed (n = 18). After insertion of the bioceramic materials, the push-out test was performed. The failure mode was analyzed using stereomicroscopy. Another set of cylindrically-shaped bioceramic samples (n = 10) was prepared for compressive strength testing. The normality of data distribution was analyzed using the Shapiro-Wilk test. The Kruskal-Wallis and Friedman tests were used for the push-out test data, while compressive strength was analyzed with analysis of variance and the Tukey test, considering a significance level of 0.05. Results: Biodentine presented a higher median bond strength value (14.79 MPa) than MTA Repair HP (8.84 MPa) and Bio-C Repair (3.48 MPa), with a significant difference only between Biodentine and Bio-C Repair. In the Biodentine group, the most frequent failure mode was mixed (61%), while in the MTA Repair HP and Bio-C Repair groups, it was adhesive (94% and 72%, respectively). Biodentine showed greater resistance to compression (29.59 ± 8.47 MPa) than MTA Repair HP (18.68 ± 7.40 MPa) and Bio-C Repair (19.96 ± 3.96 MPa) (p < 0.05). Conclusions: Biodentine showed greater compressive strength than MTA Repair HP and Bio-C Repair, and greater bond strength than Bio-C Repair. The most frequent failure mode of Biodentine was mixed, while that of MTA Repair HP and Bio-C Repair was adhesive.

Push-out bond strength and marginal adaptation of apical plugs with bioactive endodontic cements in simulated immature teeth

  • Maria Aparecida Barbosa de Sa;Eduardo Nunes ;Alberto Nogueira da Gama Antunes ;Manoel Brito Junior ;Martinho Campolina Rebello Horta ;Rodrigo Rodrigues Amaral;Stephen Cohen ;Frank Ferreira Silveira
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.4
    • /
    • pp.53.1-53.11
    • /
    • 2021
  • Objectives: This study evaluates the bond strength and marginal adaptation of mineral trioxide aggregate (MTA) Repair HP and Biodentine used as apical plugs; MTA was used as reference material for comparison. Materials and Methods: A total of 30 single-rooted teeth with standardized, artificially created open apices were randomly divided into 3 groups (n = 10 per group), according to the material used to form 6-mm-thick apical plugs: group 1 (MTA Repair HP); group 2 (Biodentine); and group 3 (white MTA). Subsequently, the specimens were transversely sectioned to obtain 2 (cervical and apical) 2.5-mm-thick slices per root. Epoxy resin replicas were observed under a scanning electron microscope to measure the gap size at the material/dentin interface (the largest and smaller gaps were recorded for each replica). The bond strength of the investigated materials to dentin was determined using the push-out test. The variable bond strengths and gap sizes were evaluated independently at the apical and cervical root dentin slices. Data were analyzed using descriptive and analytic statistics. Results: The comparison between the groups regarding the variables' bond strengths and gap sizes showed no statistical difference (p > 0.05) except for a single difference in the smallest gap at the cervical root dentin slice, which was higher in group 3 than in group 1 (p < 0.05). Conclusions: The bond strength and marginal adaptation to root canal walls of MTA HP and Biodentine cement were comparable to white MTA.

Microleakage Assessment of a Pozzolan Cement-based Mineral Trioxide Aggregate Root Canal Sealer (포졸란 시멘트를 기반으로 하는 근관전색제의 치근단부 미세누출 평가)

  • Kim, Mijun;Park, Howon;Lee, Juhyun;Seo, Hyunwoo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.44 no.1
    • /
    • pp.20-27
    • /
    • 2017
  • This study aimed to assess microleakage of Endoseal MTA when it is used as a root canal sealer and a root canal filling material compared with conventional endodontic treatment materials Forty-two mature human permanent teeth with a single root canal were divided randomly into three experimental groups (n = 10) and two control groups (n = 6). Group A was obturated with AH $plus^{(R)}$ and gutta-percha (GP). Group E1 was obturated with Endoseal MTA and GP. Group E2 was obturated with Endoseal MTA only. The positive control group was obturated with GP only and the negative control group was obturated in the same way as the experimental groups. The samples were kept in saline solution for 24 hours and were immersed in 0.2% rhodamine B dye solution for 24 hours. Then the samples were split longitudinally and the micoleakage was assessed under a stereomicroscope. Complete microleakage was detected in all positive control group samples, whereas no microleakage was detected in the negative control group. There was no statistically significant difference between the experimental groups in the Kruskal-Wallis test. These results suggest that Endoseal MTA has potential use as a root canal sealer and a root canal filling material.

Comparative analysis of physicochemical properties of root perforation sealer materials

  • Orcati Dorileo, Maura Cristiane Goncales;Pedro, Fabio Luis Miranda;Bandeca, Matheus Coelho;Guedes, Orlando Aguirre;Villa, Ricardo Dalla;Borges, Alvaro Henrique
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.3
    • /
    • pp.201-209
    • /
    • 2014
  • Objectives: This study evaluated the solubility, dimensional alteration, pH, electrical conductivity, and radiopacity of root perforation sealer materials. Materials and Methods: For the pH test, the samples were immersed in distilled water for different periods of time. Then, the samples were retained in plastic recipients, and the electrical conductivity of the solution was measured. The solubility, dimensional alteration, and radiopacity properties were evaluated according to Specification No. 57 of the American National Standards Institute/American Dental Association (ANSI/ADA). Statistical analyses were carried out using analysis of variance (ANOVA) and Tukey's test at a significance level of 5%. When the sample distribution was not normal, a nonparametric ANOVA was performed with a Kruskal-Wallis test (${\alpha}$ = 0.05). Results: The results showed that white structural Portland cement (PC) had the highest solubility, while mineral trioxide aggregate (MTA)-based cements, ProRoot MTA (Dentsply-Tulsa Dental) and MTA BIO ($\hat{A}$ngelus Ind. Prod.), had the lowest values. MTA BIO showed the lowest dimensional alteration values and white PC presented the highest values. No differences among the tested materials were observed in the the pH and electrical conductivity analyses. Only the MTA-based cements met the ANSI/ADA recommendations regarding radiopacity, overcoming the three steps of the aluminum step wedge. Conclusions: On the basis of these results, we concluded that the values of solubility and dimensional alteration of the materials were in accordance with the ANSI/ADA specifications. PCs did not fulfill the ANSI/ADA requirements regarding radiopacity. No differences were observed among the materials with respect to the pH and electrical conductivity analyses.

Push-out bond strength and intratubular biomineralization of a hydraulic root-end filling material premixed with dimethyl sulfoxide as a vehicle

  • Ju-Ha Park;Hee-Jin Kim;Kwang-Won Lee;Mi-Kyung Yu;Kyung-San Min
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.1
    • /
    • pp.8.1-8.8
    • /
    • 2023
  • Objectives: This study was designed to evaluate the parameters of bonding performance to root dentin, including push-out bond strength and dentinal tubular biomineralization, of a hydraulic bioceramic root-end filling material premixed with dimethyl sulfoxide (Endocem MTA Premixed) in comparison to a conventional powder-liquid-type cement (ProRoot MTA). Materials and Methods: The root canal of a single-rooted premolar was filled with either ProRoot MTA or Endocem MTA Premixed (n = 15). A slice of dentin was obtained from each root. Using the sliced specimen, the push-out bond strength was measured, and the failure pattern was observed under a stereomicroscope. The apical segment was divided into halves; the split surface was observed under a scanning electron microscope, and intratubular biomineralization was examined by observing the precipitates formed in the dentinal tubule. Then, the chemical characteristics of the precipitates were evaluated with energy-dispersive X-ray spectroscopic (EDS) analysis. The data were analyzed using the Student's t-test followed by the Mann-Whitney U test (p < 0.05). Results: No significant difference was found between the 2 tested groups in push-out bond strength, and cohesive failure was the predominant failure type. In both groups, flake-shaped precipitates were observed along dentinal tubules. The EDS analysis indicated that the mass percentage of calcium and phosphorus in the precipitate was similar to that found in hydroxyapatite. Conclusions: Regarding bonding to root dentin, Endocem MTA Premixed may have potential for use as an acceptable root-end filling material.

Bioactivity of endodontic biomaterials on dental pulp stem cells through dentin

  • Javid, Bahar;Panahandeh, Narges;Torabzadeh, Hassan;Nazarian, Hamid;Parhizkar, Ardavan;Asgary, Saeed
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.1
    • /
    • pp.3.1-3.10
    • /
    • 2020
  • Objectives: This study investigated the indirect effect of calcium-enriched mixture (CEM) cement and mineral trioxide aggregate (MTA), as 2 calcium silicate-based hydraulic cements, on human dental pulp stem cells (hDPSCs) through different dentin thicknesses. Materials and Methods: Two-chamber setups were designed to simulate indirect pulp capping (IPC). Human molars were sectioned to obtain 0.1-, 0.3-, and 0.5-mm-thick dentin discs, which were placed between the 2 chambers to simulate an IPC procedure. Then, MTA and CEM were applied on one side of the discs, while hDPSCs were cultured on the other side. After 2 weeks of incubation, the cells were removed, and cell proliferation, morphology, and attachment to the discs were evaluated under scanning electron microscopy (SEM). Energy-dispersive X-ray (EDXA) spectroscopy was performed for elemental analysis. Alkaline phosphatase (ALP) activity was assessed quantitatively. The data were analyzed using the Kruskal-Wallis and Mann-Whitney tests. Results: SEM micrographs revealed elongated cells, collagen fibers, and calcified nucleations in all samples. EDXA verified that the calcified nucleations consisted of calcium phosphate. The largest calcifications were seen in the 0.1-mm-thick dentin subgroups. There was no significant difference in ALP activity across the CEM subgroups; however, ALP activity was significantly lower in the 0.1-mm-thick dentin subgroup than in the other MTA subgroups (p < 0.05). Conclusions: The employed capping biomaterials exerted biological activity on hDPSCs, as shown by cell proliferation, morphology, and attachment and calcific precipitations, through 0.1- to 0.5-mm-thick layers of dentin. In IPC, the bioactivity of these endodontic biomaterials is probably beneficial.