DOI QR코드

DOI QR Code

Effects of different calcium-silicate based materials on fracture resistance of immature permanent teeth with replacement root resorption and osteoclastogenesis

  • Received : 2022.10.13
  • Accepted : 2023.03.26
  • Published : 2023.05.31

Abstract

Objectives: This study evaluated the effects of Biodentine (BD), Bio-C Repair (BCR), and mineral trioxide aggregate (MTA) plug on the fracture resistance of simulated immature teeth with replacement root resorption (RRR) and in vitro-induced osteoclastogenesis. Materials and Methods: Sixty bovine incisors simulating immature teeth and RRR were divided into 5 groups: BD and BCR groups, with samples completely filled with the respective materials; MTA group, which utilized a 3-mm apical MTA plug; RRR group, which received no root canal filling; and normal periodontal ligament (PL) group, which had no RRR and no root canal filling. All the teeth underwent cycling loading, and compression strength testing was performed using a universal testing machine. RAW 264.7 macrophages were treated with 1:16 extracts of BD, BCR, and MTA containing receptor activator of nuclear factor-kappa B ligand (RANKL) for 5 days. RANKL-induced osteoclast differentiation was assessed by staining with tartrate-resistant acid phosphatase. The fracture load and osteoclast number were analyzed using 1-way ANOVA and Tukey's test (α = 0.05). Results: No significant difference in fracture resistance was observed among the groups (p > 0.05). All materials similarly inhibited osteoclastogenesis (p > 0.05), except for BCR, which led to a lower percentage of osteoclasts than did MTA (p < 0.0001). Conclusions: The treatment options for non-vital immature teeth with RRR did not strengthen the teeth and promoted a similar resistance to fractures in all cases. BD, MTA, and BCR showed inhibitory effects on osteoclast differentiation, with BCR yielding improved results compared to the other materials.

Keywords

Acknowledgement

This project was developed at CPBio - Biomechanics, Biomaterials, and Cell Biology Research Center of the Universidade Federal de Uberlandia. The research was financed in part by the Fundacao de Amparo a Pesquisa do Estado de Minas Gerais (Finance code: APQ-02660-21; APQ-04262-22), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), and Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior - Brasil (CAPES) (Finance code 001).

References

  1. Rocha Lima TF, Nagata JY, de Souza-Filho FJ, de Jesus Soares A. Post-traumatic complications of severe luxations and replanted teeth. J Contemp Dent Pract 2015;16:13-19. https://doi.org/10.5005/jp-journals-10024-1628
  2. de Souza BD, Dutra KL, Reyes-Carmona J, Bortoluzzi EA, Kuntze MM, Teixeira CS, Porporatti AL, De Luca Canto G. Incidence of root resorption after concussion, subluxation, lateral luxation, intrusion, and extrusion: a systematic review. Clin Oral Investig 2020;24:1101-1111. https://doi.org/10.1007/s00784-020-03199-3
  3. Galler KM, Gratz EM, Widbiller M, Buchalla W, Knuttel H. Pathophysiological mechanisms of root resorption after dental trauma: a systematic scoping review. BMC Oral Health 2021;21:163.
  4. Panzarini SR, Sonoda CK, Saito CT, Hamanaka EF, Poi WR. Delayed tooth replantation: MTA as root canal filling. Braz Oral Res 2014;28:1-7. https://doi.org/10.1590/1807-3107BOR-2014.vol28.0059
  5. Torabinejad M, Parirokh M, Dummer PM. Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview - part II: other clinical applications and complications. Int Endod J 2018;51:284-317. https://doi.org/10.1111/iej.12843
  6. Kaur M, Singh H, Dhillon JS, Batra M, Saini M. MTA versus Biodentine: review of literature with a comparative analysis. J Clin Diagn Res 2017;11:ZG01-ZG05. https://doi.org/10.7860/JCDR/2017/25840.10374
  7. Ghilotti J, Sanz JL, Lopez-Garcia S, Guerrero-Girones J, Pecci-Lloret MP, Lozano A, Llena C, Rodriguez-Lozano FJ, Forner L, Spagnuolo G. Comparative surface morphology, chemical composition, and cytocompatibility of Bio-C Repair, Biodentine, and ProRoot MTA on hDPCs. Materials (Basel) 2020;13:2189.
  8. Oliveira LV, de Souza GL, da Silva GR, Magalhaes TE, Freitas GA, Turrioni AP, de Rezende Barbosa GL, Moura CC. Biological parameters, discolouration and radiopacity of calcium silicate-based materials in a simulated model of partial pulpotomy. Int Endod J 2021;54:2133-2144. https://doi.org/10.1111/iej.13616
  9. Benetti F, Queiroz IO, Cosme-Silva L, Conti LC, Oliveira SH, Cintra LT. Cytotoxicity, biocompatibility and biomineralization of a new ready-for-use Bioceramic repair material. Braz Dent J 2019;30:325-332. https://doi.org/10.1590/0103-6440201902457
  10. Santiago MC, Gomes-Cornelio AL, de Oliveira LA, Tanomaru-Filho M, Salles LP. Calcium silicate-based cements cause environmental stiffness and show diverse potential to induce osteogenesis in human osteoblastic cells. Sci Rep 2021;11:16784.
  11. Karapinar-Kazandag M, Basrani B, Tom-Kun Yamagishi V, Azarpazhooh A, Friedman S. Fracture resistance of simulated immature tooth roots reinforced with MTA or restorative materials. Dent Traumatol 2016;32:146-152. https://doi.org/10.1111/edt.12230
  12. Linsuwanont P, Kulvitit S, Santiwong B. Reinforcement of simulated immature permanent teeth after mineral trioxide aggregate apexification. J Endod 2018;44:163-167. https://doi.org/10.1016/j.joen.2017.08.031
  13. Nagendrababu V, Murray PE, Ordinola-Zapata R, Peters OA, Rocas IN, Siqueira JF Jr, Priya E, Jayaraman J, J Pulikkotil S, Camilleri J, Boutsioukis C, Rossi-Fedele G, Dummer PM. PRILE 2021 guidelines for reporting laboratory studies in endodontology: a consensus-based development. Int Endod J 2021;54:1482-1490. https://doi.org/10.1111/iej.13542
  14. Tanalp J, Dikbas I, Malkondu O, Ersev H, Gungor T, Bayirli G. Comparison of the fracture resistance of simulated immature permanent teeth using various canal filling materials and fiber posts. Dent Traumatol 2012;28:457-464. https://doi.org/10.1111/j.1600-9657.2011.01098.x
  15. Brito-Junior M, Pereira RD, Verissimo C, Soares CJ, Faria-e-Silva AL, Camilo CC, Sousa-Neto MD. Fracture resistance and stress distribution of simulated immature teeth after apexification with mineral trioxide aggregate. Int Endod J 2014;47:958-966. https://doi.org/10.1111/iej.12241
  16. Vieira HT, Vizzotto MB, da Silveira PF, Arus NA, Correa Travessas JA, da Silveira HL. Diagnostic efficacy of different cone beam computed tomography scanning protocols in the detection of chemically simulated external root resorption. Oral Surg Oral Med Oral Pathol Oral Radiol 2020;130:322-327. https://doi.org/10.1016/j.oooo.2020.03.046
  17. Soares CJ, Pizi EC, Fonseca RB, Martins LR. Influence of root embedment material and periodontal ligament simulation on fracture resistance tests. Braz Oral Res 2005;19:11-16. https://doi.org/10.1590/S1806-83242005000100003
  18. Mello I, Michaud PL, Butt Z. Fracture resistance of immature teeth submitted to different endodontic procedures and restorative protocols. J Endod 2020;46:1465-1469. https://doi.org/10.1016/j.joen.2020.06.015
  19. ISO 10993-5 - biological evaluation of medical devices- part 5: tests for in vitro cytotoxicity. ISO, Geneva, Switzerland 2009
  20. Reis MV, de Souza GL, Moura CC, da Silva MV, Souza MA, Soares PB, Soares CJ. Effects of Lectin (ScLL) on osteoclast-like multinucleated giant cells' maturation: a preliminary in vitro study. Dent Traumatol 2018;34:329-335. https://doi.org/10.1111/edt.12412
  21. Rezende TM, Ribeiro Sobrinho AP, Vieira LQ, Sousa MG, Kawai T. Mineral trioxide aggregate (MTA) inhibits osteoclastogenesis and osteoclast activation through calcium and aluminum activities. Clin Oral Investig 2021;25:1805-1814. https://doi.org/10.1007/s00784-020-03483-2
  22. Elnaghy A, Elsaka S. Fracture resistance of simulated immature roots using Biodentine and fiber post compared with different canal-filling materials under aging conditions. Clin Oral Investig 2020;24:1333-1338. https://doi.org/10.1007/s00784-019-03014-8
  23. Andreasen JO. Analysis of pathogenesis and topography of replacement root resorption (ankylosis) after replantation of mature permanent incisors in monkeys. Swed Dent J 1980;4:231-240.
  24. Fongsamootr T, Suttakul P. Effect of periodontal ligament on stress distribution and displacement of tooth and bone structure using finite element simulation. Eng J (NY) 2015;19:99-108. https://doi.org/10.4186/ej.2015.19.2.99
  25. Marchionatti AM, Wandscher VF, Broch J, Bergoli CD, Maier J, Valandro LF, Kaizer OB. Influence of periodontal ligament simulation on bond strength and fracture resistance of roots restored with fiber posts. J Appl Oral Sci 2014;22:450-458. https://doi.org/10.1590/1678-775720140067
  26. Yasin R, Al-Jundi S, Khader Y. Effect of mineral trioxide aggregate and biodentineTM on fracture resistance of immature teeth dentine over time: in vitro study. Eur Arch Paediatr Dent 2021;22:603-609. https://doi.org/10.1007/s40368-020-00597-9
  27. Pandolfo MT, Rover G, Bortoluzzi EA, Teixeira CD, Rossetto HL, Fernades PC, Corte-Real IS, Carvalho SM, Garcia LD. Fracture resistance of simulated immature teeth reinforced with different mineral aggregate-based materials. Braz Dent J 2021;32:21-31. https://doi.org/10.1590/0103-6440202104236
  28. de Sa MA, Nunes E, Antunes AN, Brito Junior M, Horta MC, Amaral RR, Cohen S, Silveira FF. Push-out bond strength and marginal adaptation of apical plugs with bioactive endodontic cements in simulated immature teeth. Restor Dent Endod 2021;46:e53.
  29. Danwittayakorn S, Banomyong D, Ongchavalit L, Ngoenwiwatkul Y, Porkaew P. Comparison of the effects of intraradicular materials on the incidence of fatal root fracture in immature teeth treated with mineral trioxide aggregate apexification: a retrospective study. J Endod 2019;45:977-984.e1. https://doi.org/10.1016/j.joen.2019.05.008
  30. Sano H, Ciucchi B, Matthews WG, Pashley DH. Tensile properties of mineralized and demineralized human and bovine dentin. J Dent Res 1994;73:1205-1211. https://doi.org/10.1177/00220345940730061201
  31. Schilke R, Lisson JA, Bauss O, Geurtsen W. Comparison of the number and diameter of dentinal tubules in human and bovine dentine by scanning electron microscopic investigation. Arch Oral Biol 2000;45:355-361. https://doi.org/10.1016/S0003-9969(00)00006-6
  32. Reis AF, Giannini M, Kavaguchi A, Soares CJ, Line SR. Comparison of microtensile bond strength to enamel and dentin of human, bovine, and porcine teeth. J Adhes Dent 2004;6:117-121.
  33. Soares CJ, Barbosa LM, Santana FR, Soares PB, Mota AS, Silva GR. Fracture strength of composite fixed partial denture using bovine teeth as a substitute for human teeth with or without fiber-reinforcement. Braz Dent J 2010;21:235-240. https://doi.org/10.1590/S0103-64402010000300011
  34. Rodrigues MN, Bruno KF, de Alencar AH, Silva JD, de Siqueira PC, Decurcio DA, Estrela C. Comparative analysis of bond strength to root dentin and compression of bioceramic cements used in regenerative endodontic procedures. Restor Dent Endod 2021;46:e59. 
  35. Belli S, Eraslan O, Eskitascioglu G. Effect of different treatment options on biomechanics of immature teeth: a finite element stress analysis study. J Endod 2018;44:475-479. https://doi.org/10.1016/j.joen.2017.08.037
  36. Tay FR, Pashley DH. Monoblocks in root canals: a hypothetical or a tangible goal. J Endod 2007;33:391-398. https://doi.org/10.1016/j.joen.2006.10.009
  37. Honegger P. Overview of cell and tissue culture techniques. Curr Protocols Pharmacol 2001;Chapter 12:12.1.
  38. Collin-Osdoby P, Osdoby P. RANKL-mediated osteoclast formation from murine RAW 264.7 cells. Methods Mol Biol 2012;816:187-202. https://doi.org/10.1007/978-1-61779-415-5_13
  39. Oliveira LV, da Silva GR, Souza GL, Magalhaes TE, Barbosa GL, Turrioni AP, Moura CC. A laboratory evaluation of cell viability, radiopacity and tooth discoloration induced by regenerative endodontic materials. Int Endod J 2020;53:1140-1152. https://doi.org/10.1111/iej.13308
  40. Kim M, Kim S, Ko H, Song M. Effect of ProRoot MTA® and Biodentine® on osteoclastic differentiation and activity of mouse bone marrow macrophages. J Appl Oral Sci 2019;27:e20180150.
  41. Cheng X, Zhu L, Zhang J, Yu J, Liu S, Lv F, Lin Y, Liu G, Peng B. Anti-osteoclastogenesis of mineral trioxide aggregate through inhibition of the autophagic pathway. J Endod 2017;43:766-773. https://doi.org/10.1016/j.joen.2016.12.013
  42. da Fonseca TS, Silva GF, Guerreiro-Tanomaru JM, Delfino MM, Sasso-Cerri E, Tanomaru-Filho M, Cerri PS. Biodentine and MTA modulate immunoinflammatory response favoring bone formation in sealing of furcation perforations in rat molars. Clin Oral Investig 2019;23:1237-1252. https://doi.org/10.1007/s00784-018-2550-7
  43. Faloni AP, Sasso-Cerri E, Rocha FR, Katchburian E, Cerri PS. Structural and functional changes in the alveolar bone osteoclasts of estrogen-treated rats. J Anat 2012;220:77-85. https://doi.org/10.1111/j.1469-7580.2011.01449.x
  44. Zaidi M, Adebanjo OA, Moonga BS, Sun L, Huang CL. Emerging insights into the role of calcium ions in osteoclast regulation. J Bone Miner Res 1999;14:669-674. https://doi.org/10.1359/jbmr.1999.14.5.669
  45. Erakovic M, Duka M, Bekic M, Tomic S, Ismaili B, Vucevic D, Colic M. Anti-inflammatory and immunomodulatory effects of Biodentine on human periapical lesion cells in culture. Int Endod J 2020;53:1398-1412. https://doi.org/10.1111/iej.13351
  46. Petean IB, Kuchler EC, Soares IM, Segato RA, Silva LA, Antunes LA, Salles AG, Antunes LS, Sousa-Neto MD. Genetic polymorphisms in RANK and RANKL are associated with persistent apical periodontitis. J Endod 2019;45:526-531.  https://doi.org/10.1016/j.joen.2018.10.022