• 제목/요약/키워드: MSH3

검색결과 114건 처리시간 0.022초

Streptomyces coelicolor A[3]2에서 Mycothiol 생합성에 관여하는 Inositol Monophosphatase 유전자의 클로닝 및 발현 (Cloning and Expression of Inositol Monophosphatase Gene from Streptomyces coelicolor A[3]2)

  • 김진권;최학선;김성준;김시욱
    • KSBB Journal
    • /
    • 제19권6호
    • /
    • pp.462-466
    • /
    • 2004
  • S. coelicolor A3(2)로부터 항산화 저분자 thiol분자인 MSH를 HPLC 및 monobromobimane 형광 검출 방법으로 분리${\cdot}$정제하여 그 존재를 확인하였다. 표준물질인 MSH-bimane과 동일하게 용출되는 MSH 분획을 확인하였으며 여러 thiol 분획 중 MSH 분획이 가장 많은 것으로 보아 MSH가 S. coelicolor의 주된 thiol 화합물로 판단되었다. MSH 생합성에 관여하는 효소 중 I-1-Pase의 유전자의 기능을 알아보기 위하여 이 유전자를 방선균에서 분리한 후 대장균에 클로닝하여 과도발현시켰다. 발현된 I-1-Pase를 Ni-NTA column을 사용하여 정제하였다. 정제된 I-1-Pase는 soluble protein으로 281개 아미노산으로 구성되어 있으며 분자량은 32 kDa이었다. 인간 및 대장균의 I-1-Pase와 각각 24와 $25\%$의 sequence homology를 보였으며, 기존의 I-1-Pase가 가지고 있는 공통의 I-1-Pase motif A와 motif B를 S. coelicolor A3(2)도 가지고 있는 것으로 확인되었다.

Association between Mismatch Repair Gene MSH3 codons 1036 and 222 Polymorphisms and Sporadic Prostate Cancer in the Iranian Population

  • Jafary, Fariba;Salehi, Mansoor;Sedghi, Maryam;Nouri, Nayereh;Jafary, Farzaneh;Sadeghi, Farzaneh;Motamedi, Shima;Talebi, Maede
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권12호
    • /
    • pp.6055-6057
    • /
    • 2012
  • The mismatch repair system (MMR) is a post-replicative DNA repair mechanism whose defects can lead to cancer. The MSH3 protein is an essential component of the system. We postulated that MSH3 gene polymorphisms might therefore be associated with prostate cancer (PC). We studied MSH3 codon 222 and MSH3 codon 1036 polymorphisms in a group of Iranian sporadic PC patients. A total of 60 controls and 18 patients were assessed using the polymerase chain reaction and single strand conformational polymorphism. For comparing the genotype frequencies of patients and controls the chi-square test was applied. The obtained result indicated that there was significantly association between G/A genotype of MSH3 codon 222 and G/G genotype of MSH3 codon 1036 with an increased PC risk (P=0.012 and P=0.02 respectively). Our results demonstrated that MSH3 codon 222 and MSH3 codon 1036 polymorphisms may be risk factors for sporadic prostate cancer in the Iranian population.

Suppressed DNA Repair Mechanisms in Rheumatoid Arthritis

  • Lee, Sang-Heon;Firestein, Gary S
    • IMMUNE NETWORK
    • /
    • 제2권4호
    • /
    • pp.208-216
    • /
    • 2002
  • Background: Reactive oxygen and nitrogen are produced by rheumatoid arthritis (RA) synovial tissue and can induce mutations in key genes. Normally, this process is prevented by a DNA mismatch repair (MMR) system that maintains sequence fidelity. Key members of the MMR system include MutS${\alpha}$ (comprised of hMSH2 and hMSH6), which can sense and repair single base mismatches and 8-oxoguanine, and MutS${\beta}$ (comprised of hMSH2 and hMSH3), which repairs longer insertion/deletion loops. Methods: To provide further evidence of DNA damage, we analyzed synovial tissues for microsatellite instability (MSI). MSI was examined by PCR on genomic DNA of paired synovial tissue and peripheral blood cells (PBC) of RA patients using specific primer sequences for 5 key microsatellites. Results: Surprisingly, abundant MSI was observed in RA synovium compared with osteoarthritis (OA) tissue. Western blot analysis of the same tissues for the expression of MMR proteins demonstrated decreased hMSH6 and increased hMSH3 in RA synovium. To evaluate potential mechanisms of MMR regulation in arthritis, fibroblast-like synoviocytes (FLS) were isolated from synovial tissues and incubated with the nitric oxide donor S-nitroso-N-acetylpenicillamine (SNAP). Western blot analysis demonstrated constitutive expression of hMSH2, 3 and 6 in RA and OA FLS. When FLS were cultured with SNAP, the RA synovial pattern of MMR expression was reproduced (high hMSH3, low hMSH6). Conclusion: Therefore, oxidative stress can relax the DNA MMR system in RA by suppressing hMSH6. Decreased hMSH6 can subsequently interfere with repair of single base mutations, which is the type observed in RA. We propose that oxidative stress not only creates DNA adducts that are potentially mutagenic, but also suppresses the mechanisms that limit the DNA damage.

세신추출물이 α-MSH 자극에 의한 B16F10 세포의 멜라닌생성에 미치는 영향 (Studies of Inhibitory Mechanism on Melanogenesis by Partially Purified Asiasari radix in α-MSH Stimulated B16F10 Melanoma Cells)

  • 장지연;김하늬;김유리;김병우;최영현;최병태
    • 생명과학회지
    • /
    • 제20권11호
    • /
    • pp.1617-1624
    • /
    • 2010
  • $\alpha$-MSH는 세포내 cAMP를 증폭시켜 멜라닌세포의 증식과 색소 증가에 관여한다. 본 연구에서는 $\alpha$-MSH로 자극한 B16F10 세포에서 세신추출물의 hypopigmenting 효과를 조사하고 그 억제기전에 대하여 조사하였다. 세신추출물은 $\alpha$-MSH에 의해 유도된 tyrosinase 활성과 멜라닌생성을 효과적으로 억제시켰으며, 이는 tyrosinase 발현을 조절하는 전사인자인 MITF의 발현억제와 연관성이 있었다. 즉 세신추출물은 MEK/ERK와 PI3K/Akt의 활성화를 통하여 MITF를 조절함으로서 $\alpha$-MSH에 의해 유도되는 tyrosinase, TRP-1, Dct 등 멜라닌생성관련 단백질을 억제함으로서 멜라닌생성을 저해하는 것으로 사료된다.

Identification of Genes for Mycothiol Biosynthesis in Streptomyces coelicolor A3(2)

  • Park Joo-Hong;Cha Chang-Jun;Roe Jung-Hye
    • Journal of Microbiology
    • /
    • 제44권1호
    • /
    • pp.121-125
    • /
    • 2006
  • Mycothiol is a low molecular weight thiol compound produced by a number of actinomycetes, and has been suggested to serve both anti-oxidative and detoxifying roles. To investigate the metabolism and the role of mycothiol in Streptomyces coelicolor, the biosynthetic genes (mshA, B, C, and D) were predicted based on sequence homology with the mycobacterial genes and confirmed experimentally. Disruption of the mshA, C, and D genes by PCR targeting mutagenesis resulted in no synthesis of mycothiol, whereas the mshB mutation reduced its level to about $10\%$ of the wild type. The results indicate that the mshA, C, and D genes encode non-redundant biosynthetic enzymes, whereas the enzymatic activity of MshB (acetylase) is shared by at least one other gene product, most likely the mca gene product (amidase).

가솔린엔진의 연소실내 유동개선에 의한 급속희박 연소효과에 관한 연구 (A study on the effect improving in-cylinder flow on fast and lean burn in a gasoline engine)

  • 강건용;엄종호;정동수
    • 오토저널
    • /
    • 제14권3호
    • /
    • pp.80-89
    • /
    • 1992
  • An experimental study of in-cylinder of flow and combustion characteristics in two gasoline engines of different intake ports which are denoted as original port and masked shroud head (MSH) ports is presented. The flows generated by the MSH and the original port are invest- igated by laser Doppler velocimeter(LDV) under steady flow and motoring (non-firing) condit -ions. Combustion characteristics with different swirl levels produced by two intake ports are analyzed by combustion pressure measurement and statistical calculation. The swirl inside the cylinder of the MSH port engine is found to be much higher than the original port, and the MSH has a large eddy motion of cylinder diameter size. Using ensemble average method to valuate engine turbulence under motoring condition, the MSH port engine is shown to have h -igher turbulence intensity than the original port, so that the effect of the MSH port on fast burn is shown. Also the cyclic variations of peak pressure and the reaching time in the MSH port are apparently reduced.

  • PDF

인진(茵蔯) 에탄올추출물이 ${\alpha}$-MSH로 유도된 과색소 형성에 미치는 영향 (Effect of the Ethanol Extract of Artemisiae Capillaris Herba on the Hyperpigmentation Induced by ${\alpha}$-MSH)

  • 신기돈;김대성;이장천;문연자;우원홍;이영철
    • 동의생리병리학회지
    • /
    • 제23권3호
    • /
    • pp.574-580
    • /
    • 2009
  • Melanogenesis is induced mainly by ultraviolet radiation of sunlight and ${\alpha}$-Melanocyte stimulation hormone (${\alpha}$-MSH) which binds to a specific G protein coupled receptor. ${\alpha}$-MSH and cAMP-elevating agents are known to melanin syntheisis and dendrite outgrowth. The purpose of this study was to investigate the mechanism of melanogenesis inhibition in B16/F10 cells by ethanol extract of Artemisiae Capillaris Herba. In the present study, ${\alpha}$-MSH led to a stimulation of melanin synthesis that appeared to result from an increased tyrosinase activity and melanin content. However, the ethanol extract of Artemisiae Capillaris Herba inhibited the ${\alpha}$-MSH-induced tyrosinase activity and melanin content. In control conditions, B16/F10 cells displayed a fibroblastic appearance while ${\alpha}$-MSH treatment promoted the emergence of small and numerous dendrites from the plasma membrane. The ethanol extract of Artemisiae Capillaris Herba abolished the ${\alpha}$-MSH-induced dendricity. Regarding protein levels of the melanogenic enzymes, the amounts of tyrosinase were increased after incubation with ${\alpha}$-MSH. The treatment of Artemisiae Capillaris Herba ethanol extract decreased the ${\alpha}$-MSH expression levels of tyrosinase. Based on these findings, it is likely that the ethanol extract of Artemisiae Capillaris Herba exerts its depigmenting effects in B16/F10 cells through the suppression of tyrosinase expression, which are key enzymes for melanogenesis.

Lactobacillus casei Secreting ${\alpha}$-MSH Induces the Therapeutic Effect on DSS-Induced Acute Colitis in Balb/c Mice

  • Yoon, Sun-Woo;Lee, Chul-Ho;Kim, Jeong-Yoon;Kim, Jie-Youn;Sung, Moon-Hee;Poo, Har-Young
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권12호
    • /
    • pp.1975-1983
    • /
    • 2008
  • The neuropeptide ${\alpha}$-melanocyte-stimulating hormone (${\alpha}$-MSH) has anti-inflammatory property by down regulating the expressions of proinflammatory cytokines. Because ${\alpha}$-MSH elicits the anti-inflammatory effect in various inflammatory disease models, we examined the therapeutic effect of oral administration of recombinant Lactobacillus casei, which secretes ${\alpha}$-MSH (L. casei-${\alpha}$-MSH), on dextran sulfate sodium (DSS)-induced colitis in Balb/c mice. Thus, we constructed the ${\alpha}$-MSH-secreting Lactobacillus casei by the basic plasmid, pLUAT-ss, which was composed of a PldhUTLS promoter and ${\alpha}$-amylase signal sequence from Streptococcus bovis strain. Acute colitis was induced by oral administration of 5% DSS in drinking water for 7 days. To investigate the effect of L. casei-${\alpha}$-MSH on the colitis, L. casei or L. casei-${\alpha}$-MSH was orally administered for 7 days and their effects on body weight, mortality rate, cytokine production, and tissue myeloperoxidase (MPO) activity were observed. Administration of L. casei-${\alpha}$-MSH reduced the symptom of acute colitis as assessed by body weight loss (DSS alone: $14.45{\pm}0.2\;g$; L. casei-${\alpha}$-MSH: $18.2{\pm}0.12\;g$), colitis score (DSS alone: $3.6{\pm}0.4$; L. casei-${\alpha}$-MSH: $1.4{\pm}0.6$), MPO activity (DSS alone: $42.7{\pm}4.5\;U/g$; L. casei-${\alpha}$-MSH: $10.25{\pm}0.5\;U/g$), survival rate, and histological damage compared with the DSS alone mice. L. casei-${\alpha}$-MSH-administered entire colon showed reduced in vitro production of proinflammatory cytokines and $NF-{\kappa}B$ activation. The ${\alpha}$-MSH-secreting recombinant L. casei showed significant anti-inflammatory effects in the murine model of acute colitis and suggests a potential therapeutic role for this agent in clinical inflammatory bowel diseases.

hMSH2 and nm23 Expression in Sporadic Colorectal Cancer and its Clinical Significance

  • Wu, Hong-Wei;Gao, Li-Dong;Wei, Guang-Hui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권3호
    • /
    • pp.1995-1998
    • /
    • 2013
  • Objective: To study the expression of the mismatch repair proteins hMSH2 and nm23 in sporadic colorectal cancer, determine any inter-relationship, and further investigate any clinical significance. Methods: Expression of hMSH2 and nm23 proteins was assessed in 87 colorectal cancer tissues by SP immunohistochemistry, with analysis of survival using follow-up data. Results: In the sporadic colorectal cancer tissues, nm23 protein expression appeared independent of the histological type (P>0.05), but correlated with the invasion depth and lymphatic metastasis (P<0.05). In contrast, hMSH2 protein expression was not significantly correlated with these clinicopathologic features (P>0.05), although it positively correlated with that of nm23 protein in the sporadic colorectal cancers (rs=0.635, P<0.05). Combined expression of the two was found to be related with invasion depth, lymphatic metastasis and prognosis of sporadic colorectal cancer (P<0.05). Conclusion: nm23 protein level was related with the degree of malignancy, and could be used as an index to predict the invasion and metastasis potential. The expression of hMSH2 protein is positively correlated that of nm23 protein, and the combined expression of the two has certain guiding significance for the prognosis of sporadic colorectal cancer.

Antimelanogenic and antioxidant effects of trimethoxybenzene derivatives: methyl 3,4,5-trimethoxybenzoate, ethyl 3,4,5-trimethoxybenzoate, methyl 3,4,5-trimethoxycinnamate, and ethyl 3,4,5-trimethoxycinnamate

  • Jaewon Shin;Harim Lee;Seunghyun Ahn;Won Seok Jeong;CheongTaek Kim;Seyeon Park
    • Journal of Applied Biological Chemistry
    • /
    • 제65권4호
    • /
    • pp.299-306
    • /
    • 2022
  • In this study, derivatives of trimethoxybenzene were investigated as inhibitors of melanogenesis. We examined the effects of methyl 3,4,5-trimethoxybenzoate (MTB), ethyl 3,4,5-trimethoxybenzoate (ETB), methyl 3,4,5-trimethoxycinnamate (MTC), and ethyl 3,4,5-trimethoxycinnamate (ETC). First, the inhibitory effects of these agents on melanin production were evaluated using α-melanocyte-stimulating hormone (α-MSH)-stimulated B16F10 melanoma cells. We found that all derivatives decreased α-MSH-induced melanin production in B16F10 melanoma cells; ETC showed a strong inhibitory effect at half of the concentration of the other derivatives. As tyrosinase is considered a key enzyme of melanogenesis, we also examined whether the derivatives inhibited tyrosinase activity. MTC and ETC reduced mushroom tyrosinase activity and expression levels of α-MSH-induced B16F10 cellular tyrosinase protein. Inhibitory effects of all derivatives on α-MSH-induced B16F10 cellular tyrosinase activity were shown in a dose-dependent manner. Additionally, the derivatives were exposed to diphenylpicrylhydrazyl free radical to examine their antioxidant characteristics. All derivatives showed considerable antioxidant activity, which was 2-fold higher than that of arbutin. In conclusion, the trimethoxybenzene derivatives, including MTB, ETB, MTC, and ETC exerted anti-melanogenic and antioxidant effects on α-MSH-stimulated melanogenesis, demonstrating their potential for use as novel hypopigmenting agents and antioxidants.