• Title/Summary/Keyword: MSER Algorithm

Search Result 8, Processing Time 0.011 seconds

Multi-scale Image Segmentation Using MSER and its Application (MSER을 이용한 다중 스케일 영상 분할과 응용)

  • Lee, Jin-Seon;Oh, Il-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.3
    • /
    • pp.11-21
    • /
    • 2014
  • Multi-scale image segmentation is important in many applications such as image stylization and medical diagnosis. This paper proposes a novel segmentation algorithm based on MSER(maximally stable extremal region) which captures multi-scale structure and is stable and efficient. The algorithm collects MSERs and then partitions the image plane by redrawing MSERs in specific order. To denoise and smooth the region boundaries, hierarchical morphological operations are developed. To illustrate effectiveness of the algorithm's multi-scale structure, effects of various types of LOD control are shown for image stylization. The proposed technique achieves this without time-consuming multi-level Gaussian smoothing. The comparisons of segmentation quality and timing efficiency with mean shift-based Edison system are presented.

Sparse decision feedback equalization for underwater acoustic channel based on minimum symbol error rate

  • Wang, Zhenzhong;Chen, Fangjiong;Yu, Hua;Shan, Zhilong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.617-627
    • /
    • 2021
  • Underwater Acoustic Channels (UAC) have inherent sparse characteristics. The traditional adaptive equalization techniques do not utilize this feature to improve the performance. In this paper we consider the Variable Adaptive Subgradient Projection (V-ASPM) method to derive a new sparse equalization algorithm based on the Minimum Symbol Error Rate (MSER) criterion. Compared with the original MSER algorithm, our proposed scheme adds sparse matrix to the iterative formula, which can assign independent step-sizes to the equalizer taps. How to obtain such proper sparse matrix is also analyzed. On this basis, the selection scheme of the sparse matrix is obtained by combining the variable step-sizes and equalizer sparsity measure. We call the new algorithm Sparse-Control Proportional-MSER (SC-PMSER) equalizer. Finally, the proposed SC-PMSER equalizer is embedded into a turbo receiver, which perform turbo decoding, Digital Phase-Locked Loop (DPLL), time-reversal receiving and multi-reception diversity. Simulation and real-field experimental results show that the proposed algorithm has better performance in convergence speed and Bit Error Rate (BER).

Fault Detections of Ring Structures using Vibration Modes (진동모드를 이용한 링 구조물의 결함 탐지)

  • Kim, Seock-Hyun;Jang, Ho-Sik
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.29-36
    • /
    • 2002
  • A damage detection algorithm using vibration modes is applied to the ring structures and the modal behaviors of the slightly asymmetric rings are examined. Mode shape change, MSER(modal strain energy ratio) and MCR(modal curvature ratio) are investigated to identify the locations of faults or damages The above fault detection parameters are calculated and compared by the finite element analysis on rings with designed local damages. Damages are modeled as a reduced stiffness in the analysis The results show that MSER and MCR can be proper parameters to detect local damages in the ring structures.

  • PDF

An Ensemble Classifier Based Method to Select Optimal Image Features for License Plate Recognition (차량 번호판 인식을 위한 앙상블 학습기 기반의 최적 특징 선택 방법)

  • Jo, Jae-Ho;Kang, Dong-Joong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.142-149
    • /
    • 2016
  • This paper proposes a method to detect LP(License Plate) of vehicles in indoor and outdoor parking lots. In restricted environment, there are many conventional methods for detecting LP. But, it is difficult to detect LP in natural and complex scenes with background clutters because several patterns similar with text or LP always exist in complicated backgrounds. To verify the performance of LP text detection in natural images, we apply MB-LGP feature by combining with ensemble machine learning algorithm in purpose of selecting optimal features of small number in huge pool. The feature selection is performed by adaptive boosting algorithm that shows great performance in minimum false positive detection ratio and in computing time when combined with cascade approach. MSER is used to provide initial text regions of vehicle LP. Throughout the experiment using real images, the proposed method functions robustly extracting LP in natural scene as well as the controlled environment.

An End-to-End Sequence Learning Approach for Text Extraction and Recognition from Scene Image

  • Lalitha, G.;Lavanya, B.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.220-228
    • /
    • 2022
  • Image always carry useful information, detecting a text from scene images is imperative. The proposed work's purpose is to recognize scene text image, example boarding image kept on highways. Scene text detection on highways boarding's plays a vital role in road safety measures. At initial stage applying preprocessing techniques to the image is to sharpen and improve the features exist in the image. Likely, morphological operator were applied on images to remove the close gaps exists between objects. Here we proposed a two phase algorithm for extracting and recognizing text from scene images. In phase I text from scenery image is extracted by applying various image preprocessing techniques like blurring, erosion, tophat followed by applying thresholding, morphological gradient and by fixing kernel sizes, then canny edge detector is applied to detect the text contained in the scene images. In phase II text from scenery image recognized using MSER (Maximally Stable Extremal Region) and OCR; Proposed work aimed to detect the text contained in the scenery images from popular dataset repositories SVT, ICDAR 2003, MSRA-TD 500; these images were captured at various illumination and angles. Proposed algorithm produces higher accuracy in minimal execution time compared with state-of-the-art methodologies.

A Study on Extraction of text region using shape analysis of text in natural scene image (자연영상에서 문자의 형태 분석을 이용한 문자영역 추출에 관한 연구)

  • Yang, Jae-Ho;Han, Hyun-Ho;Kim, Ki-Bong;Lee, Sang-Hun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.61-68
    • /
    • 2018
  • In this paper, we propose a method of character detection by analyzing image enhancement and character type to detect characters in natural images that can be acquired in everyday life. The proposed method emphasizes the boundaries of the object part using the unsharp mask in order to improve the detection rate of the area to be recognized as a character in a natural image. By using the boundary of the enhanced object, the character candidate region of the image is detected using Maximal Stable Extermal Regions (MSER). In order to detect the region to be judged as a real character in the detected character candidate region, the shape of each region is analyzed and the non-character region other than the region having the character characteristic is removed to increase the detection rate of the actual character region. In order to compare the objective test of this paper, we compare the detection rate and the accuracy of the character region with the existing methods. Experimental results show that the proposed method improves the detection rate and accuracy of the character region over the existing character detection method.

A text region extraction algorithm based on Android for real-time text recognition (실시간 글자 인식을 위한 안드로이드 기반의 글자 영역 추출 기술)

  • Lee, Gyu-Cheol;Lee, Sangyong;Yoo, Jisang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.11a
    • /
    • pp.194-196
    • /
    • 2016
  • 본 논문에서는 안드로이드 환경에서 글자 인식을 위한 전처리 과정으로 입력 영상에서 글자 영역만을 추출하는 기법을 제안한다. 대부분의 글자 인식 어플리케이션에서 글자를 인식하는 방법은 RoI(Region of Interest)에 인식하려는 글자를 위치시켜 놓고 사용자가 촬영함으로써 진행된다. 하지만 촬영된 영상 그대로를 인식에 사용하기 때문에 잡음 및 글자가 아닌 영역들을 글자로 인식하는 문제 등으로 인하여 인식률이 현저히 떨어진다. 제안하는 기법에서는 MSER(Maximally Stable Extremal Regions) 기법을 통해 각각의 글자를 추출한 후, 글자의 특성을 이용하여 글자 영역만을 추출한다. 기법의 성능 평가는 무료 OCR(Optical Character Recognition) 엔진인 Tesseract-OCR을 통해 글자 인식률을 비교하였으며, 제안하는 기법을 적용한 글자 인식 시스템이 적용하지 않은 시스템보다 글자의 인식률이 향상되는 것을 확인하였다.

  • PDF

Accurate Pose Measurement of Label-attached Small Objects Using a 3D Vision Technique (3차원 비전 기술을 이용한 라벨부착 소형 물체의 정밀 자세 측정)

  • Kim, Eung-su;Kim, Kye-Kyung;Wijenayake, Udaya;Park, Soon-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.10
    • /
    • pp.839-846
    • /
    • 2016
  • Bin picking is a task of picking a small object from a bin. For accurate bin picking, the 3D pose information, position, and orientation of a small object is required because the object is mixed with other objects of the same type in the bin. Using this 3D pose information, a robotic gripper can pick an object using exact distance and orientation measurements. In this paper, we propose a 3D vision technique for accurate measurement of 3D position and orientation of small objects, on which a paper label is stuck to the surface. We use a maximally stable extremal regions (MSERs) algorithm to detect the label areas in a left bin image acquired from a stereo camera. In each label area, image features are detected and their correlation with a right image is determined by a stereo vision technique. Then, the 3D position and orientation of the objects are measured accurately using a transformation from the camera coordinate system to the new label coordinate system. For stable measurement during a bin picking task, the pose information is filtered by averaging at fixed time intervals. Our experimental results indicate that the proposed technique yields pose accuracy between 0.4~0.5mm in positional measurements and $0.2-0.6^{\circ}$ in angle measurements.