• 제목/요약/키워드: MSER Algorithm

검색결과 8건 처리시간 0.022초

MSER을 이용한 다중 스케일 영상 분할과 응용 (Multi-scale Image Segmentation Using MSER and its Application)

  • 이진선;오일석
    • 한국콘텐츠학회논문지
    • /
    • 제14권3호
    • /
    • pp.11-21
    • /
    • 2014
  • 다중 스케일 영상 분할은 영상 스타일링과 의료진단과 같은 여러 응용에서 매우 중요하다. 이 논문은 다중 스케일 구조를 확보하며 안정적이고 효율적인 MSER에 기반을 둔 새로운 알고리즘을 제안한다. 이 알고리즘은 영상에서 MSER를 수집한 후, 이것들을 특정한 순서대로 영상에 다시 그려 넣음으로써 영상을 분할한다. 영상 경계를 평활화하고 잡음을 제거하기 위한 계층적 모폴로지 연산을 제안한다. 알고리즘의 다중 스케일 특성을 보이기 위해, 여러 종류의 상세 단계 제어의 효과를 영상 스타일링에 적용한다. 제안한 기법은 이러한 효과를 시간이 많이 걸리는 다중 가우시언 평활화없이 수행한다. 분할 품질과 계산 시간 측면에서 민쉬프트-기반 Edison 시스템과 비교 결과를 제시한다.

Sparse decision feedback equalization for underwater acoustic channel based on minimum symbol error rate

  • Wang, Zhenzhong;Chen, Fangjiong;Yu, Hua;Shan, Zhilong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.617-627
    • /
    • 2021
  • Underwater Acoustic Channels (UAC) have inherent sparse characteristics. The traditional adaptive equalization techniques do not utilize this feature to improve the performance. In this paper we consider the Variable Adaptive Subgradient Projection (V-ASPM) method to derive a new sparse equalization algorithm based on the Minimum Symbol Error Rate (MSER) criterion. Compared with the original MSER algorithm, our proposed scheme adds sparse matrix to the iterative formula, which can assign independent step-sizes to the equalizer taps. How to obtain such proper sparse matrix is also analyzed. On this basis, the selection scheme of the sparse matrix is obtained by combining the variable step-sizes and equalizer sparsity measure. We call the new algorithm Sparse-Control Proportional-MSER (SC-PMSER) equalizer. Finally, the proposed SC-PMSER equalizer is embedded into a turbo receiver, which perform turbo decoding, Digital Phase-Locked Loop (DPLL), time-reversal receiving and multi-reception diversity. Simulation and real-field experimental results show that the proposed algorithm has better performance in convergence speed and Bit Error Rate (BER).

진동모드를 이용한 링 구조물의 결함 탐지 (Fault Detections of Ring Structures using Vibration Modes)

  • 김석현;장호식
    • 산업기술연구
    • /
    • 제22권A호
    • /
    • pp.29-36
    • /
    • 2002
  • A damage detection algorithm using vibration modes is applied to the ring structures and the modal behaviors of the slightly asymmetric rings are examined. Mode shape change, MSER(modal strain energy ratio) and MCR(modal curvature ratio) are investigated to identify the locations of faults or damages The above fault detection parameters are calculated and compared by the finite element analysis on rings with designed local damages. Damages are modeled as a reduced stiffness in the analysis The results show that MSER and MCR can be proper parameters to detect local damages in the ring structures.

  • PDF

차량 번호판 인식을 위한 앙상블 학습기 기반의 최적 특징 선택 방법 (An Ensemble Classifier Based Method to Select Optimal Image Features for License Plate Recognition)

  • 조재호;강동중
    • 전기학회논문지
    • /
    • 제65권1호
    • /
    • pp.142-149
    • /
    • 2016
  • This paper proposes a method to detect LP(License Plate) of vehicles in indoor and outdoor parking lots. In restricted environment, there are many conventional methods for detecting LP. But, it is difficult to detect LP in natural and complex scenes with background clutters because several patterns similar with text or LP always exist in complicated backgrounds. To verify the performance of LP text detection in natural images, we apply MB-LGP feature by combining with ensemble machine learning algorithm in purpose of selecting optimal features of small number in huge pool. The feature selection is performed by adaptive boosting algorithm that shows great performance in minimum false positive detection ratio and in computing time when combined with cascade approach. MSER is used to provide initial text regions of vehicle LP. Throughout the experiment using real images, the proposed method functions robustly extracting LP in natural scene as well as the controlled environment.

An End-to-End Sequence Learning Approach for Text Extraction and Recognition from Scene Image

  • Lalitha, G.;Lavanya, B.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권7호
    • /
    • pp.220-228
    • /
    • 2022
  • Image always carry useful information, detecting a text from scene images is imperative. The proposed work's purpose is to recognize scene text image, example boarding image kept on highways. Scene text detection on highways boarding's plays a vital role in road safety measures. At initial stage applying preprocessing techniques to the image is to sharpen and improve the features exist in the image. Likely, morphological operator were applied on images to remove the close gaps exists between objects. Here we proposed a two phase algorithm for extracting and recognizing text from scene images. In phase I text from scenery image is extracted by applying various image preprocessing techniques like blurring, erosion, tophat followed by applying thresholding, morphological gradient and by fixing kernel sizes, then canny edge detector is applied to detect the text contained in the scene images. In phase II text from scenery image recognized using MSER (Maximally Stable Extremal Region) and OCR; Proposed work aimed to detect the text contained in the scenery images from popular dataset repositories SVT, ICDAR 2003, MSRA-TD 500; these images were captured at various illumination and angles. Proposed algorithm produces higher accuracy in minimal execution time compared with state-of-the-art methodologies.

자연영상에서 문자의 형태 분석을 이용한 문자영역 추출에 관한 연구 (A Study on Extraction of text region using shape analysis of text in natural scene image)

  • 양재호;한현호;김기봉;이상훈
    • 한국융합학회논문지
    • /
    • 제9권11호
    • /
    • pp.61-68
    • /
    • 2018
  • 본 논문에서는 일상에서 획득할 수 있는 자연 영상에서 문자를 검출하기 위해 영상 개선 및 문자의 형태를 분석하여 문자를 검출하는 방법을 제안한다. 제안하는 방법은 자연 영상에서 문자로 인식될 영역의 검출률을 향상시키기 위해 객체부분의 경계를 언샤프 마스크를 사용하여 강조하였다. 향상된 객체의 경계 부분을 이용하여 영상의 문자 후보영역을 MSER(Maximally Stable Extermal Regions)을 이용하여 검출하였다. 검출된 문자 후보영역에서 실제 문자로 판단될 영역을 검출하기 위해 각 영역들의 형태를 분석하여 글자의 특성을 갖는 영역외의 비 문자영역을 제거하여 실제 문자영역 검출률을 높였다. 본 논문의 정량적 평가를 위해 문자 영역의 검출률과 정확도를 이용하여 기존의 방법들과 비교하였다. 실험결과 기존의 문자 검출 방법보다 제안하는 방법이 비교적 높은 문자영역의 검출률 및 정확도를 보였다.

실시간 글자 인식을 위한 안드로이드 기반의 글자 영역 추출 기술 (A text region extraction algorithm based on Android for real-time text recognition)

  • 이규철;이상용;유지상
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2016년도 추계학술대회
    • /
    • pp.194-196
    • /
    • 2016
  • 본 논문에서는 안드로이드 환경에서 글자 인식을 위한 전처리 과정으로 입력 영상에서 글자 영역만을 추출하는 기법을 제안한다. 대부분의 글자 인식 어플리케이션에서 글자를 인식하는 방법은 RoI(Region of Interest)에 인식하려는 글자를 위치시켜 놓고 사용자가 촬영함으로써 진행된다. 하지만 촬영된 영상 그대로를 인식에 사용하기 때문에 잡음 및 글자가 아닌 영역들을 글자로 인식하는 문제 등으로 인하여 인식률이 현저히 떨어진다. 제안하는 기법에서는 MSER(Maximally Stable Extremal Regions) 기법을 통해 각각의 글자를 추출한 후, 글자의 특성을 이용하여 글자 영역만을 추출한다. 기법의 성능 평가는 무료 OCR(Optical Character Recognition) 엔진인 Tesseract-OCR을 통해 글자 인식률을 비교하였으며, 제안하는 기법을 적용한 글자 인식 시스템이 적용하지 않은 시스템보다 글자의 인식률이 향상되는 것을 확인하였다.

  • PDF

3차원 비전 기술을 이용한 라벨부착 소형 물체의 정밀 자세 측정 (Accurate Pose Measurement of Label-attached Small Objects Using a 3D Vision Technique)

  • 김응수;김계경;;박순용
    • 제어로봇시스템학회논문지
    • /
    • 제22권10호
    • /
    • pp.839-846
    • /
    • 2016
  • Bin picking is a task of picking a small object from a bin. For accurate bin picking, the 3D pose information, position, and orientation of a small object is required because the object is mixed with other objects of the same type in the bin. Using this 3D pose information, a robotic gripper can pick an object using exact distance and orientation measurements. In this paper, we propose a 3D vision technique for accurate measurement of 3D position and orientation of small objects, on which a paper label is stuck to the surface. We use a maximally stable extremal regions (MSERs) algorithm to detect the label areas in a left bin image acquired from a stereo camera. In each label area, image features are detected and their correlation with a right image is determined by a stereo vision technique. Then, the 3D position and orientation of the objects are measured accurately using a transformation from the camera coordinate system to the new label coordinate system. For stable measurement during a bin picking task, the pose information is filtered by averaging at fixed time intervals. Our experimental results indicate that the proposed technique yields pose accuracy between 0.4~0.5mm in positional measurements and $0.2-0.6^{\circ}$ in angle measurements.