• 제목/요약/키워드: MSE(Mean Square Error)

검색결과 296건 처리시간 0.03초

ECG Denoising by Modeling Wavelet Sub-Band Coefficients using Kernel Density Estimation

  • Ardhapurkar, Shubhada;Manthalkar, Ramchandra;Gajre, Suhas
    • Journal of Information Processing Systems
    • /
    • 제8권4호
    • /
    • pp.669-684
    • /
    • 2012
  • Discrete wavelet transforms are extensively preferred in biomedical signal processing for denoising, feature extraction, and compression. This paper presents a new denoising method based on the modeling of discrete wavelet coefficients of ECG in selected sub-bands with Kernel density estimation. The modeling provides a statistical distribution of information and noise. A Gaussian kernel with bounded support is used for modeling sub-band coefficients and thresholds and is estimated by placing a sliding window on a normalized cumulative density function. We evaluated this approach on offline noisy ECG records from the Cardiovascular Research Centre of the University of Glasgow and on records from the MIT-BIH Arrythmia database. Results show that our proposed technique has a more reliable physical basis and provides improvement in the Signal-to-Noise Ratio (SNR) and Percentage RMS Difference (PRD). The morphological information of ECG signals is found to be unaffected after employing denoising. This is quantified by calculating the mean square error between the feature vectors of original and denoised signal. MSE values are less than 0.05 for most of the cases.

Implementation of Elbow Method to improve the Gases Classification Performance based on the RBFN-NSG Algorithm

  • Jeon, Jin-Young;Choi, Jang-Sik;Byun, Hyung-Gi
    • 센서학회지
    • /
    • 제25권6호
    • /
    • pp.431-434
    • /
    • 2016
  • Currently, the radial basis function network (RBFN) and various other neural networks are employed to classify gases using chemical sensors arrays, and their performance is steadily improving. In particular, the identification performance of the RBFN algorithm is being improved by optimizing parameters such as the center, width, and weight, and improved algorithms such as the radial basis function network-stochastic gradient (RBFN-SG) and radial basis function network-normalized stochastic gradient (RBFN-NSG) have been announced. In this study, we optimized the number of centers, which is one of the parameters of the RBFN-NSG algorithm, and observed the change in the identification performance. For the experiment, repeated measurement data of 8 samples were used, and the elbow method was applied to determine the optimal number of centers for each sample of input data. The experiment was carried out in two cases(the only one center per sample and the optimal number of centers obtained by elbow method), and the experimental results were compared using the mean square error (MSE). From the results of the experiments, we observed that the case having an optimal number of centers, obtained using the elbow method, showed a better identification performance than that without any optimization.

레이더 강우 앙상블과 다양한 유출모형의 블랜딩을 활용한 최적 유출곡선 산정 (Simulation of Optimal Runoff Hydrograph Using Ensemble of Radar Rainfall and Blending of RunoffsBasin)

  • 이명진;주홍준;김형수
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.135-135
    • /
    • 2017
  • 최근 강우-유출 모형은 물리적 현상에 근거한 확정론적 모의 모형과 물리적 성분으로 설명할 수 없는 내용에 대해 통계적으로 접근하는 추계학적 모의 모형 등이 계속 연구되고 있어 자연현상에 가까운 결과를 기대할 수 있게 되었다. 하지만 우리나라의 경우 많은 연구에도 불구하고 돌발성 집중호우, 여름철 집중되는 강우 등으로 인해 재난이 반복적으로 발생하고 있어 모형의 정확성에 대한 논의가 지속되고 있다. 동일한 유역에 동일한 입력자료를 사용하더라도 사용하는 모형에 따라 유출 분석결과는 상이하며 이는 유출 해석에 대한 불확실성으로 작용한다. 본 연구에서는 앙상블 및 블랜딩 기법을 사용하여 각 강우-유출 모형의 불확실성을 고려하여 최적 유출량을 산정하고자 한다. 대상 유역으로는 한강 수계에 있는 중랑천 유역을 선정하였으며, Distributed 모형인 Vflo 모형과 Lumped 모형인 저류함수 모형, SSARR모형, TANK 모형을 이용하여 유출 분석을 실시하였다. 그 후, Multi-Model Super Ensemble(MMSE), Simple Model Average(SMA), Mean Square Error(MSE) 방법 등의 blending 기법을 이용하여 하나의 통합된 형태의 유출 분석 결과를 제시하였으며, 최적 유출량 산정을 위한 blending 기법을 선정하였다. 본 연구를 통해 동일한 강우 시나리오에 대한 여러 강우-유출 모형에 대한 정확도를 확인하였으며, 앙상블 및 블랜딩 기법을 사용하여 유출 분석에 대한 정확도를 향상시킬 수 있을 것으로 판단된다.

  • PDF

Estimation of various amounts of kaolinite on concrete alkali-silica reactions using different machine learning methods

  • Aflatoonian, Moein;Mirhosseini, Ramin Tabatabaei
    • Structural Engineering and Mechanics
    • /
    • 제83권1호
    • /
    • pp.79-92
    • /
    • 2022
  • In this paper, the impact of a vernacular pozzolanic kaolinite mine on concrete alkali-silica reaction and strength has been evaluated. For making the samples, kaolinite powder with various levels has been used in the quality specification test of aggregates based on the ASTM C1260 standard in order to investigate the effect of kaolinite particles on reducing the reaction of the mortar bars. The compressive strength, X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM) experiments have been performed on concrete specimens. The obtained results show that addition of kaolinite powder to concrete will cause a pozzolanic reaction and decrease the permeability of concrete samples comparing to the reference concrete specimen. Further, various machine learning methods have been used to predict ASR-induced expansion per different amounts of kaolinite. In the process of modeling methods, optimal method is considered to have the lowest mean square error (MSE) simultaneous to having the highest correlation coefficient (R). Therefore, to evaluate the efficiency of the proposed model, the results of the support vector machine (SVM) method were compared with the decision tree method, regression analysis and neural network algorithm. The results of comparison of forecasting tools showed that support vector machines have outperformed the results of other methods. Therefore, the support vector machine method can be mentioned as an effective approach to predict ASR-induced expansion.

CMIP5 GCM을 활용한 사헬 지대의 사막면적 모의 평가 및 분석 (Evaluation of CMIP5 GCMs for simulating desert area over Sahel region)

  • 서호철;최연우;;김연주
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.255-255
    • /
    • 2020
  • 아프리카 대륙에서 존재하는 가장 큰 사하라 사막(Sahara desert)의 면적은 지난 1세기 동안 기후변화로 인하여 10% 정도 증가하였고, 미래에도 기온상승으로 인하여 증가할 것으로 판단된다. 사하라 사막 면적의 증가로 인하여 아프리카의 자연식생과 수자원뿐만 아니라 아프리카에 거주하는 사람들의 삶에 많은 영향을 미치기에 사막의 면적 또는 경계선의 위치를 예측함은 매우 중요하다. 본 연구에서는 Coupled Model Intercomparison Project Phase 5 (CMIP5)의 36개 Global Climate Models (GCMs)과 ERA-interim 재분석 자료의 1979~2000년 강수 자료들을 이용하여 사헬(Sahel) 지대 서쪽(15W~15E, 10N~20N)과 동쪽(15E~35E, 10N~20N)의 강수량과 사막경계선을 비교하였다. 또한, 각 모델의 과거 모의 성능을 평가하여 미래 기후 예측성을 판단하고자 한다. 본 연구에서는 22년 평균 강수량이 200mm 이하인 지역을 사막이라 정의하고, 모델별로 연평균 강수량과 사막경계선에 대한 root mean square error(RMSE)를 산정하여 평가하였다. 또한, 습윤 정적 에너지(Moist. Static Energy; MSE), 바람(풍속 및 풍향) 자료를 이용하여 각 모델의 사막경계선의 오차에 대한 이유를 분석하였다. 이 연구를 바탕으로 하여 사헬 지대의 강수량 및 사막면적 모의의 불확실성 요소를 이해하고, 미래 상세 지역 수문기후 변화 예측에 활용 가능한 GCMs을 선별할 수 있을 것으로 판단한다.

  • PDF

폐루프 다중입출력 시스템을 위한 효율적인 그룹별 공간 다중화 기법 설계 (A New Efficient Group-wise Spatial Multiplexing Design for Closed-Loop MIMO Systems)

  • 문성현;이흔철;김영태;이인규
    • 한국통신학회논문지
    • /
    • 제35권4A호
    • /
    • pp.322-331
    • /
    • 2010
  • 본 논문에서는 폐루프 다중입출력 무선통신 환경을 위한 새로운 공간 다중화 기법을 소개한다. 기존에 제안되 었던 직교 공간 다중화 (OSM; orthogonalized spatial multiplexing) 방식을 확장하여, 우리는 임의의 수의 데이터 스트림을 동시에 전송하기 위한 새로운 방식을 제안한다. 이를 위하여 우리는 데이터 스트림을 두 개 이상의 그룹으로 나누고 수신기에서 블록 대각화 과정을 수행한다. 제안하는 기법은 적은 피드백 정보량을 가지며 심볼 단위의 ML (maximum likelihood) 검출을 통해 복잡도를 최소화한다. 실험 결과를 통해 제안하는 기법은 기존의 설계 기법들에 비하여 비트에러율 관점에서 큰 성능 이득을 제공함을 확인한다. 또한 추가적인 피드백을 통해 수신 그룹의 선택을 최적화함으로써 성능을 더욱 향상시킬 수 있음을 관찰한다.

RBFN을 이용한 Bayesian Equalizer에서의 비선형 다층 결합 기법 (Nonlinear Multilayer Combining Techniques in Bayesian Equalizer Using Radial Basis Function Network)

  • 최수용;고균병;홍대식
    • 한국통신학회논문지
    • /
    • 제28권5C호
    • /
    • pp.452-460
    • /
    • 2003
  • 본 논문에서는 optimal Bayesian equalization solution인 RBF(radial basis function)를 이용한 등화기 (RE)의 구조를 보다 단순화하고, 비선형 왜곡 등의 심각한 정보 신호의 손상에 대한 보상 능력을 향상시키기 위하여 비선형 다층 결합을 갖는 RBF측 이용한 등화기(RNE)를 새로이 제안한다. 기존의 RE는 RBF로 구성된 은닉층의 출력 값을 선형 결합하여 등화기 출력을 얻는다. 이와 달리 새로이 제안하는 RNE는 기존의 RE에서 RBF로 구성된 은닉층의 출력 값에 대한 결합 기법으로 perceptron을 이용한 비선형 다층 결합을 사용한다. 제안한 equalizer를 결정궤환 방식이 있는 경우와 없는 경우의 등화기로 각각 구현한다. 실험 결과 제안한 등화기는 선형 간섭이 존재하는 디지털 통신 시스템과 비선형 왜곡이 존재하는 자기기록 시스템에서보다 간단한 구조로 기존의 optimal Bayesian 등화기와 거의 같거나 우수한 비트 오류 화률 성능 및 MSE(men squared error) 수렴 특성을 나타내었다.

시간영역 및 주파수영역 블럭적응 여파기에 관한 연구 : 제 2 부- 성능분석 (Time- and Frequency-Domain Block LMS Adaptive Digital Filters: Part Ⅱ - Performance Analysis)

  • 이재천;은종관
    • 한국음향학회지
    • /
    • 제7권4호
    • /
    • pp.54-76
    • /
    • 1988
  • 본 연구의 제 1 부에서는 통일된 행렬표현 기법을 통하여 여러가지 블럭적응 여파기 구현방법들을 도출할 수 있음을 보였다. 제 2 부에서는 여러 주파수영역 블럭적응 여파기들 중에서도 수렴속도가 매우 빠른 self-orthogonalizing 알고리즘과 계산량이 대폭 감소되는 비제약 알고리즘의 수렴특성들을 overlap-save 및 overlap-add 블럭데이타 분할방법에 대해서 분석한다. 먼저, 수렴인자가 상수일 때와는 달리, 앞에서 언급한 두 주파수영역 여파기들이 공통의 자기상관행렬의 지배를 받기 때문에 수렴특성 분석에 있어서 서로 밀접한 관련이 있음을 보인다. 다음으로 여파기 계수의 수효가 충분히 클 때, 주파수영역 블럭적응 여파기는 계수적응 알고리즘에서 제약의 유무에 관계없이 동일한 최적해를 가짐을 보인다. 그리고 나서 비제약 알고리즘의 계수들은 적절한 조건하에서 원래의 제약알고리즘과 같이 동일한 최적해에 수렴함을 증명한다. 이에 반하여, 최소자승오차 관점에서의 성능분석 결과는 제약을 풀었을 경우에 정상상태에서 약간의 성능저하가 있음을 밝혀낸다. 한편으로 계수의 수효가 작을 때는 원래의 제약 알고리즘은 심한 성능저하를 초래하는 반면에 비제약 알고리즘은 제약의 제거를 통해 상대적으로 계수의 수효가 증가한 효과 대문에 훨씬 좋은 수렴특성을 가짐을 보인다. 또한 self-orthogonalizing 주파수영역 블럭적응 여파기의 자기상관행렬이 주파수 영역에서 대각행렬로 됨을 보여 줌으로써 효율적으로 수렴시간을 단축시키는 구현방법임을 뒷받침한다.

  • PDF

CCD 카메라 모델을 이용한 플렌옵틱 카메라의 캘리브레이션 방법 (Calibration Method of Plenoptic Camera using CCD Camera Model)

  • 김송란;정민창;강현수
    • 한국정보통신학회논문지
    • /
    • 제22권2호
    • /
    • pp.261-269
    • /
    • 2018
  • 본 논문은 플렌옵틱 영상에 CCD 카메라 모델을 적용하여 플렌옵틱 카메라의 내부 파라미터를 구하는 편리한 방법을 제안한다. 플렌옵틱 카메라 캘리브레이션에 사용되는 영상은 일반적으로 CCD 카메라 캘리브레이션에서 사용하는 체크보드패턴을 사용한다. CCD 카메라 모델에 기반 하여 플렌옵틱 카메라 모델의 행렬식을 구하고 이를 통해 초점거리, 주점, 베이스라인, 가상카메라와 물체사이의 거리를 나타내는 4가지 방정식을 공식화한다. 그리고 비선형 최적화 기법을 수행하여 방정식의 해를 찾는다. 구해진 추정치는 실제 매개 변수와 비교하고 구해진 파라미터를 이용해 재 투영 오차율을 구한다. 실험 결과 제안한 방법을 통해 구한 매개 변수는 실제와 매우 유사한 값을 가지며 재투영 오차율은 수용할 수 있는 정도로 나타난다.

이동 페이딩 채널하의 멀티 스텝 채널 예측기를 이용한 적응 OFDM 시스템의 성능개선 (Performance Improvement on Adaptive OFDM System with a Multi-Step Channel Predictor over Mobile Fading Channels)

  • 안현준;김현동;최상호
    • 한국통신학회논문지
    • /
    • 제31권12A호
    • /
    • pp.1182-1188
    • /
    • 2006
  • 적응 변조 OFDM(Orthogonal Frequency Division Multiplexing) 전송 기법은 각 부반송파의 채널 상태에 따라 변조방식을 적절히 변화시켜 무선 채널의 다중 경로 페이딩에 의해 의한 영향을 최소화하여 시스템의 성능을 증가시키는 방식이다. 시스템이 적응적으로 전송하기위해서는 단말기에서 각 부반송파(subcarrier)별 채널 상태 정보 (Channel State Information : CSI)를 되먹임 채널을 통해 실시간으로 기지국으로 전송해 주어야한다. 하지만, 단말기에서 데이터를 처리할 때 걸리는 시간과, 단말기에서 기지국으로 CSI를 되먹임(feedback) 할 때 걸리는 시간으로 인한 되먹임 지연(feedback delay) d가 발생하게 된다. 이 되먹임 지연은 CSI 정보의 불일치를 발생시켜 적응 OFDM 시스템의 성능저하를 일으킨다. 본 논문에서는 CSI의 되먹임 지연 $d(\geq2)$를 적절히 보상하는 주파수 축 멀티 스탭 채널 예측기를 제안하고 이를 적응 전송 OFDM 시스템에 적용하고 모의실험을 통하여 기존의 OFDM 시스템, 기존의 채널 예측방식과의 성능을 MSE(mean square error), 비트오율(bit error rate : BER) 및 채널용량을 바탕으로 비교한다.