Discrete wavelet transforms are extensively preferred in biomedical signal processing for denoising, feature extraction, and compression. This paper presents a new denoising method based on the modeling of discrete wavelet coefficients of ECG in selected sub-bands with Kernel density estimation. The modeling provides a statistical distribution of information and noise. A Gaussian kernel with bounded support is used for modeling sub-band coefficients and thresholds and is estimated by placing a sliding window on a normalized cumulative density function. We evaluated this approach on offline noisy ECG records from the Cardiovascular Research Centre of the University of Glasgow and on records from the MIT-BIH Arrythmia database. Results show that our proposed technique has a more reliable physical basis and provides improvement in the Signal-to-Noise Ratio (SNR) and Percentage RMS Difference (PRD). The morphological information of ECG signals is found to be unaffected after employing denoising. This is quantified by calculating the mean square error between the feature vectors of original and denoised signal. MSE values are less than 0.05 for most of the cases.
Currently, the radial basis function network (RBFN) and various other neural networks are employed to classify gases using chemical sensors arrays, and their performance is steadily improving. In particular, the identification performance of the RBFN algorithm is being improved by optimizing parameters such as the center, width, and weight, and improved algorithms such as the radial basis function network-stochastic gradient (RBFN-SG) and radial basis function network-normalized stochastic gradient (RBFN-NSG) have been announced. In this study, we optimized the number of centers, which is one of the parameters of the RBFN-NSG algorithm, and observed the change in the identification performance. For the experiment, repeated measurement data of 8 samples were used, and the elbow method was applied to determine the optimal number of centers for each sample of input data. The experiment was carried out in two cases(the only one center per sample and the optimal number of centers obtained by elbow method), and the experimental results were compared using the mean square error (MSE). From the results of the experiments, we observed that the case having an optimal number of centers, obtained using the elbow method, showed a better identification performance than that without any optimization.
최근 강우-유출 모형은 물리적 현상에 근거한 확정론적 모의 모형과 물리적 성분으로 설명할 수 없는 내용에 대해 통계적으로 접근하는 추계학적 모의 모형 등이 계속 연구되고 있어 자연현상에 가까운 결과를 기대할 수 있게 되었다. 하지만 우리나라의 경우 많은 연구에도 불구하고 돌발성 집중호우, 여름철 집중되는 강우 등으로 인해 재난이 반복적으로 발생하고 있어 모형의 정확성에 대한 논의가 지속되고 있다. 동일한 유역에 동일한 입력자료를 사용하더라도 사용하는 모형에 따라 유출 분석결과는 상이하며 이는 유출 해석에 대한 불확실성으로 작용한다. 본 연구에서는 앙상블 및 블랜딩 기법을 사용하여 각 강우-유출 모형의 불확실성을 고려하여 최적 유출량을 산정하고자 한다. 대상 유역으로는 한강 수계에 있는 중랑천 유역을 선정하였으며, Distributed 모형인 Vflo 모형과 Lumped 모형인 저류함수 모형, SSARR모형, TANK 모형을 이용하여 유출 분석을 실시하였다. 그 후, Multi-Model Super Ensemble(MMSE), Simple Model Average(SMA), Mean Square Error(MSE) 방법 등의 blending 기법을 이용하여 하나의 통합된 형태의 유출 분석 결과를 제시하였으며, 최적 유출량 산정을 위한 blending 기법을 선정하였다. 본 연구를 통해 동일한 강우 시나리오에 대한 여러 강우-유출 모형에 대한 정확도를 확인하였으며, 앙상블 및 블랜딩 기법을 사용하여 유출 분석에 대한 정확도를 향상시킬 수 있을 것으로 판단된다.
In this paper, the impact of a vernacular pozzolanic kaolinite mine on concrete alkali-silica reaction and strength has been evaluated. For making the samples, kaolinite powder with various levels has been used in the quality specification test of aggregates based on the ASTM C1260 standard in order to investigate the effect of kaolinite particles on reducing the reaction of the mortar bars. The compressive strength, X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM) experiments have been performed on concrete specimens. The obtained results show that addition of kaolinite powder to concrete will cause a pozzolanic reaction and decrease the permeability of concrete samples comparing to the reference concrete specimen. Further, various machine learning methods have been used to predict ASR-induced expansion per different amounts of kaolinite. In the process of modeling methods, optimal method is considered to have the lowest mean square error (MSE) simultaneous to having the highest correlation coefficient (R). Therefore, to evaluate the efficiency of the proposed model, the results of the support vector machine (SVM) method were compared with the decision tree method, regression analysis and neural network algorithm. The results of comparison of forecasting tools showed that support vector machines have outperformed the results of other methods. Therefore, the support vector machine method can be mentioned as an effective approach to predict ASR-induced expansion.
아프리카 대륙에서 존재하는 가장 큰 사하라 사막(Sahara desert)의 면적은 지난 1세기 동안 기후변화로 인하여 10% 정도 증가하였고, 미래에도 기온상승으로 인하여 증가할 것으로 판단된다. 사하라 사막 면적의 증가로 인하여 아프리카의 자연식생과 수자원뿐만 아니라 아프리카에 거주하는 사람들의 삶에 많은 영향을 미치기에 사막의 면적 또는 경계선의 위치를 예측함은 매우 중요하다. 본 연구에서는 Coupled Model Intercomparison Project Phase 5 (CMIP5)의 36개 Global Climate Models (GCMs)과 ERA-interim 재분석 자료의 1979~2000년 강수 자료들을 이용하여 사헬(Sahel) 지대 서쪽(15W~15E, 10N~20N)과 동쪽(15E~35E, 10N~20N)의 강수량과 사막경계선을 비교하였다. 또한, 각 모델의 과거 모의 성능을 평가하여 미래 기후 예측성을 판단하고자 한다. 본 연구에서는 22년 평균 강수량이 200mm 이하인 지역을 사막이라 정의하고, 모델별로 연평균 강수량과 사막경계선에 대한 root mean square error(RMSE)를 산정하여 평가하였다. 또한, 습윤 정적 에너지(Moist. Static Energy; MSE), 바람(풍속 및 풍향) 자료를 이용하여 각 모델의 사막경계선의 오차에 대한 이유를 분석하였다. 이 연구를 바탕으로 하여 사헬 지대의 강수량 및 사막면적 모의의 불확실성 요소를 이해하고, 미래 상세 지역 수문기후 변화 예측에 활용 가능한 GCMs을 선별할 수 있을 것으로 판단한다.
본 논문에서는 폐루프 다중입출력 무선통신 환경을 위한 새로운 공간 다중화 기법을 소개한다. 기존에 제안되 었던 직교 공간 다중화 (OSM; orthogonalized spatial multiplexing) 방식을 확장하여, 우리는 임의의 수의 데이터 스트림을 동시에 전송하기 위한 새로운 방식을 제안한다. 이를 위하여 우리는 데이터 스트림을 두 개 이상의 그룹으로 나누고 수신기에서 블록 대각화 과정을 수행한다. 제안하는 기법은 적은 피드백 정보량을 가지며 심볼 단위의 ML (maximum likelihood) 검출을 통해 복잡도를 최소화한다. 실험 결과를 통해 제안하는 기법은 기존의 설계 기법들에 비하여 비트에러율 관점에서 큰 성능 이득을 제공함을 확인한다. 또한 추가적인 피드백을 통해 수신 그룹의 선택을 최적화함으로써 성능을 더욱 향상시킬 수 있음을 관찰한다.
본 논문에서는 optimal Bayesian equalization solution인 RBF(radial basis function)를 이용한 등화기 (RE)의 구조를 보다 단순화하고, 비선형 왜곡 등의 심각한 정보 신호의 손상에 대한 보상 능력을 향상시키기 위하여 비선형 다층 결합을 갖는 RBF측 이용한 등화기(RNE)를 새로이 제안한다. 기존의 RE는 RBF로 구성된 은닉층의 출력 값을 선형 결합하여 등화기 출력을 얻는다. 이와 달리 새로이 제안하는 RNE는 기존의 RE에서 RBF로 구성된 은닉층의 출력 값에 대한 결합 기법으로 perceptron을 이용한 비선형 다층 결합을 사용한다. 제안한 equalizer를 결정궤환 방식이 있는 경우와 없는 경우의 등화기로 각각 구현한다. 실험 결과 제안한 등화기는 선형 간섭이 존재하는 디지털 통신 시스템과 비선형 왜곡이 존재하는 자기기록 시스템에서보다 간단한 구조로 기존의 optimal Bayesian 등화기와 거의 같거나 우수한 비트 오류 화률 성능 및 MSE(men squared error) 수렴 특성을 나타내었다.
본 연구의 제 1 부에서는 통일된 행렬표현 기법을 통하여 여러가지 블럭적응 여파기 구현방법들을 도출할 수 있음을 보였다. 제 2 부에서는 여러 주파수영역 블럭적응 여파기들 중에서도 수렴속도가 매우 빠른 self-orthogonalizing 알고리즘과 계산량이 대폭 감소되는 비제약 알고리즘의 수렴특성들을 overlap-save 및 overlap-add 블럭데이타 분할방법에 대해서 분석한다. 먼저, 수렴인자가 상수일 때와는 달리, 앞에서 언급한 두 주파수영역 여파기들이 공통의 자기상관행렬의 지배를 받기 때문에 수렴특성 분석에 있어서 서로 밀접한 관련이 있음을 보인다. 다음으로 여파기 계수의 수효가 충분히 클 때, 주파수영역 블럭적응 여파기는 계수적응 알고리즘에서 제약의 유무에 관계없이 동일한 최적해를 가짐을 보인다. 그리고 나서 비제약 알고리즘의 계수들은 적절한 조건하에서 원래의 제약알고리즘과 같이 동일한 최적해에 수렴함을 증명한다. 이에 반하여, 최소자승오차 관점에서의 성능분석 결과는 제약을 풀었을 경우에 정상상태에서 약간의 성능저하가 있음을 밝혀낸다. 한편으로 계수의 수효가 작을 때는 원래의 제약 알고리즘은 심한 성능저하를 초래하는 반면에 비제약 알고리즘은 제약의 제거를 통해 상대적으로 계수의 수효가 증가한 효과 대문에 훨씬 좋은 수렴특성을 가짐을 보인다. 또한 self-orthogonalizing 주파수영역 블럭적응 여파기의 자기상관행렬이 주파수 영역에서 대각행렬로 됨을 보여 줌으로써 효율적으로 수렴시간을 단축시키는 구현방법임을 뒷받침한다.
본 논문은 플렌옵틱 영상에 CCD 카메라 모델을 적용하여 플렌옵틱 카메라의 내부 파라미터를 구하는 편리한 방법을 제안한다. 플렌옵틱 카메라 캘리브레이션에 사용되는 영상은 일반적으로 CCD 카메라 캘리브레이션에서 사용하는 체크보드패턴을 사용한다. CCD 카메라 모델에 기반 하여 플렌옵틱 카메라 모델의 행렬식을 구하고 이를 통해 초점거리, 주점, 베이스라인, 가상카메라와 물체사이의 거리를 나타내는 4가지 방정식을 공식화한다. 그리고 비선형 최적화 기법을 수행하여 방정식의 해를 찾는다. 구해진 추정치는 실제 매개 변수와 비교하고 구해진 파라미터를 이용해 재 투영 오차율을 구한다. 실험 결과 제안한 방법을 통해 구한 매개 변수는 실제와 매우 유사한 값을 가지며 재투영 오차율은 수용할 수 있는 정도로 나타난다.
적응 변조 OFDM(Orthogonal Frequency Division Multiplexing) 전송 기법은 각 부반송파의 채널 상태에 따라 변조방식을 적절히 변화시켜 무선 채널의 다중 경로 페이딩에 의해 의한 영향을 최소화하여 시스템의 성능을 증가시키는 방식이다. 시스템이 적응적으로 전송하기위해서는 단말기에서 각 부반송파(subcarrier)별 채널 상태 정보 (Channel State Information : CSI)를 되먹임 채널을 통해 실시간으로 기지국으로 전송해 주어야한다. 하지만, 단말기에서 데이터를 처리할 때 걸리는 시간과, 단말기에서 기지국으로 CSI를 되먹임(feedback) 할 때 걸리는 시간으로 인한 되먹임 지연(feedback delay) d가 발생하게 된다. 이 되먹임 지연은 CSI 정보의 불일치를 발생시켜 적응 OFDM 시스템의 성능저하를 일으킨다. 본 논문에서는 CSI의 되먹임 지연 $d(\geq2)$를 적절히 보상하는 주파수 축 멀티 스탭 채널 예측기를 제안하고 이를 적응 전송 OFDM 시스템에 적용하고 모의실험을 통하여 기존의 OFDM 시스템, 기존의 채널 예측방식과의 성능을 MSE(mean square error), 비트오율(bit error rate : BER) 및 채널용량을 바탕으로 비교한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.