본 논문에서는 전송 속도가 9600 bps인 data modem의 복조기와 equalizer의 효과적인 구성에 대하여 연구하였으며, finite word length 효과가 equalizer 동작에 미치는 영향을 제시하였다. 복조기에는 tap수가 37개인 decimation filter를 사용해서 symbol당 곱셈 횟수를 크게 줄였는데 이때 equalizer 동작에 있어 충분한 결과를 얻을 수 있음을 알 수 있었다. 주파수 offset이 존재할 때 1차 반송파 위상 추적 loop와 2차 반공파 위상 추적 loop의 성능을 비교하였고, word length를 각각 8 bit, 12 bit 및 16bit로 변화시켰을 경우 equalizer 평형상태 MSE(mean square error)의 변화 및 tap 적응을 위한 최적 step see와 lap수를 제시하였다.
Munshi, Amani;Alshehri, Asma;Alharbi, Bayan;AlGhamdi, Eman;Banajjar, Esraa;Albogami, Meznah;Alshanbari, Hanan S.
International Journal of Computer Science & Network Security
/
제21권9호
/
pp.275-280
/
2021
With the development of communication networks, the processes of exchanging and transmitting information rapidly developed. As millions of images are sent via social media every day, also wireless sensor networks are now used in all applications to capture images such as those used in traffic lights, roads and malls. Therefore, there is a need to reduce the size of these images while maintaining an acceptable degree of quality. In this paper, we use Python software to apply K-mean Clustering algorithm to compress RGB images. The PSNR, MSE, and SSIM are utilized to measure the image quality after image compression. The results of compression reduced the image size to nearly half the size of the original images using k = 64. In the SSIM measure, the higher the K, the greater the similarity between the two images which is a good indicator to a significant reduction in image size. Our proposed compression technique powered by the K-Mean clustering algorithm is useful for compressing images and reducing the size of images.
Communications for Statistical Applications and Methods
/
제4권2호
/
pp.523-532
/
1997
We propose several estimators of the reliability function R of the two-parameter exponential distribution, and then compare those estimator in terms of the mean square error (MSE) through Monte Carlo method. We also consider the parametric bootstrap estimation. Using the parametric bootstrap estimator, we obtain the bootstrap confidence intervals for reliability function and compare the proposed bootstrap confidence intervals in terms of the length and the coverage probability through Monte Carlo method.
CNN(Convolutional Neural Network)을 이용하여 발화 주제 다중 분류 task를 multi-labeling 방법과, cluster 방법을 이용하여 수행하고, 각 방법론에 MSE(Mean Square Error), softmax cross-entropy, sigmoid cross-entropy를 적용하여 성능을 평가하였다. Network는 음절 단위로 tokenize하고, 품사정보를 각 token의 추가한 sequence와, Naver DB를 통하여 얻은 named entity 정보를 입력으로 사용한다. 실험결과 cluster 방법으로 문제를 변형하고, sigmoid를 output layer의 activation function으로 사용하고 cross entropy cost function을 이용하여 network를 학습시켰을 때 F1 0.9873으로 가장 좋은 성능을 보였다.
Journal of the Korean Data and Information Science Society
/
제8권1호
/
pp.59-70
/
1997
We introduce several estimators of the location and the scale parameters of the two-parameter exponential distribution, and then compare these estimators by the mean square error (MSE). Using the parametric bootstrap estimators and the delete-d jackknife, we obtain the bootstrap and the delete-d jackknife confidence intervals for the location and the scale parameters and compare the bootstrap confidence intervals with the delete-d jackknife confidence intervals by length and coverage probability through Monte Carlo method.
We are concerned with transmitting numerical source data of {0, 1, 2, ..., 2k-1} through a channel coding system. The rate 1/v dual-k convolutional code with the orthogonal MFSK modulation and the Viterbl decoding is employed for the implementation of the channel coding system. The mean square error of the dual-k convolutional code is evaluated for the numerical source transmitted over an additive white Gaussian noise channel with Rayleigh fading.
평균잔여수명은 공학, 의학, 생존분석, 사회과학 등 많은 분야에서 중요한 역할을 하고 있다. 특히 시스템의 신뢰성연구에서 시스템의 갑작스런 중지는 심각한 문제를 초래하기 때문에, 부품에 대한 평균잔여수명 추정은 매우 중요하다. 그래서 많은 상황변수를 고려한 시뮬레이션 연구가 되어왔다. 본 연구에서는 임의절단(random censoring) 에서 가지 평균잔여수명 추정기법을 소개하고 3가지 와이블 수명분포와 6가지 절단분포의 조합에서 시뮬레이션하였다. 또한 이들의 성과를 편의(bias)와 MSE측면에서 비교 분석하였다.
본 논문에서, 영상에서 임펄스 잡음을 효과적으로 제거하고, 연산 속도를 개선하기 위해 Fuzzy Cellular Neural Network(FCNN)구조에 Hausdorff distance(HD)를 적용한 $\alpha$-Least Trimmed Square HD($\alpha$-LTSHD) 기반 FCNN 구조를 제안한다. FCNN는 Cellular Neural Network(CNN) 구조에 퍼지 이론을 적용한 것이고, HD는 특징 대상의 대응 없이 이진 영상의 두 픽셀 집합 사이의 거리를 구하는 척도로 물체의 정합에 널리 사용한다. 성능 평가를 위해, 제안된 방법을 MSE와 SNR을 이용하여 기존 FCNN, Opening-Closing(OC) 그리고 LTSHD 연산자를 적용한 FCNN과 비교 분석하였다. 그 결과, 본 논문에서 제안된 망(network) 구조의 성능이 다른 필터보다 임펄스 잡음 제거에 우수함을 확인하였다.
광대역 무선 통신 시스템에서는 주파수 선택적 다중경로 페이딩 채널상에서 발생하는 인접 심볼간의 간섭에 의한 성능 열화를 극복하기 위해서 채널 등화 기술의 도입이 필연적이다. 그러나, 데이터 전송률이 증가함에 따라 채널 등화에 필요한 훈련열의 길이가 늘어나고, 이로 인한 오버헤드를 감소하기 위해서는 보다 수렴률이 높은 적응 알고리즘이 요구된다. 본 논문에서는 주파수 영역의 적응 여파 기법 중의 하나인 자기 직교환 방식의 결정궤환 등화기를 고려한다. 이 채널 등화기에서는 적응 알고리즘으로 DCT-LMS (discrete cosine transform least mean square) 알고리즘을 채택함으로써 수렴률과 MSE (mean square error) 성능을 향상시켜 결과적으로 광대역 무선통신에서 요구되는 훈련열에 따른 오버헤드를 감소시킬 수 있게 된다. 시뮬레이션을 통해 주파수 선택적 다중경로 페이딩 채널에서의 제안된 채널 등화 기법에 대한 성능을 분석한다.
Siddiqi, Muhammad Hameed;Fatima, Iram;Lee, Young-Koo;Lee, Sung-Young
한국정보과학회:학술대회논문집
/
한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(C)
/
pp.188-190
/
2011
Image interpolation is a technique that pervades many an application. Interpolation is almost never the goal in itself, yet it affects both the desired results and the ways to obtain them. In this paper, we proposed a technique that is capable to find out the error when the common two methods (bilinear and nearest neighbor interpolation) are applied on an image for rotation. The proposed technique also includes the comparison results of bilinear interpolation and nearest neighbor interpolation. Among them nearest neighbor interpolation gives us a better result regarding to the enhancement and due to least error. The error is found by using Mean Square Error (MSE).
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.