• Title/Summary/Keyword: MS-EIDV

Search Result 2, Processing Time 0.017 seconds

Determination of Optimal Accelerometer Locations using Mode-Shape Sensitivity (진동형상 민감도에 의한 가속도계 최적위치 결정)

  • Kwon, Soon-Jung;Shin, Soo-Bong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.29-36
    • /
    • 2006
  • This paper proposes a new algorithm of MS-EIDV (modal sensitivity-effective independence distribution vector) for determining optimal accelerometer locations (OAL) by using the Fisher Information Matrix (FIM) derived from mode-shape sensitivities. Also, the paper provides a reasonable guideline for selecting OAL which can reflect dynamic responses of a structure effectively. Since OAL should be determined with known values of structural parameters but since the parameters can be estimated by applying an inverse method such as SI (system identification) using measured response, the paper proposes a statistical method to overcome the paradox by considering the error bound of the structural parameters. To examine the proposed methods, a frequency-domain SI method has been applied. By using the identified results, the minimum necessary number of accelerometers could be selected depending on the number of target measurable modes. Through simulation studies, the results by applying EIDV method directly using the information of mode shapes were compared with those by applying the proposed MS-EIDV.

Determination of optimal accelerometer locations using modal sensitivity for identifying a structure

  • Kwon, Soon-Jung;Woo, Sungkwon;Shin, Soobong
    • Smart Structures and Systems
    • /
    • v.4 no.5
    • /
    • pp.629-640
    • /
    • 2008
  • A new algorithm is proposed to determine optimal accelerometer locations (OAL) when a structure is identified by frequency domain system identification (SI) method. As a result, a guideline is presented for selecting OAL which can reflect modal response of a structure properly. The guideline is to provide a minimum number of necessary accelerometers with the variation in the number of measurable target modes. To determine OAL for SI applications effectively, the modal sensitivity effective independence distribution vector (MS-EIDV) is developed with the likelihood function of measurements. By maximizing the likelihood of the occurrence of the measurements relative to the predictions, Fisher Information Matrix (FIM) is derived as a function of mode shape sensitivity. This paper also proposes a statistical approach in determining the structural parameters with a presumed parameter error which reflects the epistemic paradox between the determination of OAL and the application of a SI scheme. Numerical simulations have been carried out to examine the proposed OAL algorithm. A two-span multi-girder bridge and a two-span truss bridge were used for the simulation studies. To overcome a rank deficiency frequently occurred in inverting a FIM, the singular value decomposition scheme has been applied.