• Title/Summary/Keyword: MS spectrometry

Search Result 1,950, Processing Time 0.027 seconds

Analysis of Photodegradation Products of Organic Photochromes by LC/MS

  • Lim, Young-Hee;Youn, Yeu Young;Kim, Kyung Hoon;Cho, Hye-Sung
    • Mass Spectrometry Letters
    • /
    • v.3 no.4
    • /
    • pp.101-103
    • /
    • 2012
  • The ultraviolet (UV) degradation products of photochromic naphthoxazine and naphthopyran derivatives in acetonitrile were separated and identified using liquid chromatography-mass spectrometry (LC-MS). Photodegradation resulted in oxidation of products.

Soft Ionization of Metallo-Mefenamic Using Electrospray Ionization Mass Spectrometry

  • Abdelhamid, Hani Nasser;Wu, Hui-Fen
    • Mass Spectrometry Letters
    • /
    • v.6 no.2
    • /
    • pp.43-47
    • /
    • 2015
  • Detection of mefenamic acid (M, non-steroidal anti-inflammatory drug, NSAIDs) and its metallodrug was investigated using electrospray ionization mass spectrometry (ESI-MS) and fluorescence spectroscopy. ESI-MS data (500 µL, 1×10-3 M) revealed high detection sensitivity for the drug and metallodrug. ESI-MS spectra revealed peaks at 242, 580, and 777 Da corresponding to [M+H]+, [63Cu(M-H)2(H2O)2+H]+, and [56Fe(M-H)3+H]+, respectively. The metal:mefenamic ratios of ESIMS spectra are in complete agreement with the fluorescence spectroscopy results (1:2 for Cu(II) and 1:3 for Fe(III)). ESI is a soft ionization technique that can be used on labile metallo-mefenamic acids and is promising for the detection of these species in environmental samples and biological fluids.

Development of an Isotope Dilution Mass Spectrometry (IDMS)-Based Method for the Analysis of Ibuprofen

  • Lee, Joonhee;Kim, Byungjoo
    • Mass Spectrometry Letters
    • /
    • v.8 no.3
    • /
    • pp.49-52
    • /
    • 2017
  • Ibuprofen is one of the most popular analgesic and antipyretic drugs. An isotope dilution mass spectrometry method based on LC/MS was developed as a candidate reference method for the accurate determination of ibuprofen in pharmaceutical tablets. Isotope labelled ibuprofen, $ibuprofen-d_3$, was added as an internal standard into sample extracts. Ibuprofen and $ibuprofen-d_3$, was analysed by LC/MS in a selected ion monitoring (SIM) mode to detect ions at m/z 205 and 208, respectively. The repeatability and reproducibility of the developed ID-LC/MS method were tested for the validation and assessment of metrological quality of the method.

Optimization of Solid Phase Extraction Method for Quantitative Analysis of Perfluorooctanoic Acid in Serum using Liquid Chromatography-Tandem Mass Spectrometry

  • Lee, Hyun-Seok;Yim, Yong-Hyeon
    • Mass Spectrometry Letters
    • /
    • v.5 no.1
    • /
    • pp.30-33
    • /
    • 2014
  • A solid phase extraction (SPE) method was optimized for the quantitative analysis of perfluorooctanoic acid (PFOA) in serum using hydrophilic-lipophilic balance SPE and LC-MS/MS. Fetal bovine serums spiked with $^{13}C_8$-PFOA before or after SPE were used as test samples for evaluation of the SPE efficiency. Simultaneous evaluation of matrix effects and absolute SPE recovery for $^{13}C_8$-PFOA in serum using different sample pre-treatments and SPE conditions allowed optimization of SPE process efficiency with minimal matrix effect and decent SPE recovery. Introduction of protein precipitation as a sample pre-treatment procedure for serum samples before SPE generally decreased matrix effect in LC-MS/MS analysis and provided more stable recovery of PFOA.

Investigation of the Copper (Cu) Binding Site on the Amyloid beta 1-16 (Aβ16) Monomer and Dimer Using Collision-induced Dissociation with Electrospray Ionization Tandem Mass Spectrometry

  • Ji Won Jang;Jin Yeong Lim;Seo Yeon Kim;Jin Se Kim;Ho-Tae Kim
    • Mass Spectrometry Letters
    • /
    • v.14 no.4
    • /
    • pp.153-159
    • /
    • 2023
  • The copper ion, Cu(II), binding sites for amyloid fragment Aβ1-16 (=Aβ16 ) were investigated to explain the biological activity difference in the Aβ16 aggregation process. The [M+Cu+(z-2)H]z+ (z = 2, 3 and 4, M = Aβ16 monomer) and [D+Cu+(z-2)H]z+ (z = 3 and 5, D = Aβ16 dimer) structures were investigated using electrospray ionization (ESI) mass spectrometry (MS) and tandem mass spectrometry (MS/MS). Fragment ions of the [M+Cu+(z-2)H]z+ and [D+Cu+(z-2)H]z+ complexes were observed using collision-induced dissociation MS/MS. Three different fragmentation patterns (fragment "a", "b", and "y" ion series) were observed in the MS/MS spectrum of the (Aβ16 monomer or dimer-Cu) complex, with the "b" and "y" ion series regularly observed. The "a" ion series was not observed in the MS/MS spectrum of the [M+Cu+2H]4+ complex. In the non-covalent bond dissociation process, the [D+Cu+3H]5+ complex separated into three components ([M+Cu+H]3+, M3+, and M2+), and the [M+Cu]2+ subunit was not observed. The {M + fragment ion of [M+Cu+H]3+} fragmentation pattern was observed during the covalent bond dissociation of the [D+Cu +3H]5+ complex. The {M + [M+Cu+H]3+} complex geometry was assumed to be stable in the [D+Cu+3H]5+ complex. The {M + fragment ion of [M+Cu]2+} fragmentation pattern was also observed in the MS/MS spectrum of the [D+Cu+H]3+ complex. The {M + [y9+Cu]1+} fragment ion was the characteristic fragment ion. The [D+Cu+H]3+ and [D+Cu+3H]5+ complexes were likely to form a monomer-monomer-Cu (M-M-Cu) structure instead of a monomer-Cu-monomer (M-Cu-M) structure.

Electron Capture Dissociation Mass Spectrometry for Gaseous Protonated Melittin Ions and Its Single Amino Acid Substituted Variants

  • Yu, Seonghyun;Jang, Hwa-yong;Oh, Han Bin
    • Mass Spectrometry Letters
    • /
    • v.10 no.4
    • /
    • pp.117-122
    • /
    • 2019
  • This study demonstrated the sensitivity of electron capture dissociation mass spectrometry (ECD-MS) to probe subtle conformational changes in gaseous melittin ions induced by the substitution of an amino acid. ECD-MS was performed for triply and quadruply-protonated melittin and its variants obtained by a single amino acid substitution, namely, D-Pro14, Pro14Ala, and Leu13Ala. Although native triply-protonted melittin showed only a few peptide backbone cleavage products, the D-Pro14 and Pro14Ala variants exhibited extensive backbone fragments, suggesting the occurrence of a significant structural or conformational change induced by a single amino acid substitution at Pro14. On the contrary, the substitution at Leu13, namely Leu13Ala (+3), did not cause significant changes in the ECD backbone fragmentation pattern. Thus, the sensitivity of ECD-MS is demonstrated to be good enough to probe the aforementioned conformational change in melittin.

Optimization of Enzyme Digestion Conditions for Quantification of Glycated Hemoglobin Using Isotope Dilution Liquid Chromatography-Tandem Mass Spectrometry

  • Jeong, Ji-Seon
    • Mass Spectrometry Letters
    • /
    • v.5 no.2
    • /
    • pp.52-56
    • /
    • 2014
  • Glycated hemoglobin (HbA1c) is used as an index of mean glycemia over prolonged periods. This study describes an optimization of enzyme digestion conditions for quantification of non-glycated hemoglobin (HbA0) and HbA1c as diagnostic markers of diabetes mellitus. Both HbA0 and HbA1c were quantitatively determined followed by enzyme digestion using isotope dilution liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS) with synthesized N-terminal hexapeptides as standards and synthesized isotope labeled hexapeptides as internal standards. Prior to quantification, each peptide was additionally quantified by amino acid composition analysis using ID-LC-MS/MS via acid hydrolysis. Each parameter was considered strictly as a means to improve digestion efficiency and repeatability. Digestion of hemoglobin was optimized when using 100 mM ammonium acetate (pH 4.2) and a Glu-C-to-HbA1c ratio of 1:50 at $37^{\circ}C$ for 20 h. Quantification was satisfactorily reproducible with a 2.6% relative standard deviation. These conditions were recommended for a primary reference method of HbA1c quantification and for the certification of HbA1c reference material.

Liquid Chromatography-Tandem Mass Spectrometry Analysis of Riboflavin in Beagle Dog Plasma for Pharmacokinetic Studies

  • Jeong, Hyeon Myeong;Shin, Beom Soo;Shin, Soyoung
    • Mass Spectrometry Letters
    • /
    • v.11 no.1
    • /
    • pp.10-14
    • /
    • 2020
  • Riboflavin is a water-soluble vitamin, which serves as a precursor to flavin mononucleotide and flavin adenine dinucleotide. This study aimed to develop a simple and rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis for the quantification of riboflavin in the Beagle dog plasma. This method utilized simple protein precipitation with acetonitrile and 13C4, 15N2-riboflavin was used as an internal standard (IS). For chromatographic separation, a hydrophilic interaction liquid chromatography (HILIC) column was used with gradient elution. The mobile phase consisted of 0.1% (v/v) aqueous formic acid with 10 mM ammonium formate and acetonitrile with 0.1% (v/v) formic acid. Since riboflavin is an endogenous compound, 4% bovine serum albumin in phosphate buffered saline was used as a surrogate matrix to prepare the calibration curve. The quantification limit for riboflavin in the Beagle dog plasma was 5 ng/mL. The method was fully validated for its specificity, sensitivity, accuracy and precision, recovery, and stability according to the US FDA guidance. The developed LC-MS/MS method may be useful for the in vivo pharmacokinetic studies of riboflavin.