• Title/Summary/Keyword: MRS broth

Search Result 174, Processing Time 0.025 seconds

Application of Response Surface Methodology in Medium Optimization to Improve Lactic Acid Production by Lactobacillus paracasei SRCM201474 (반응표면분석법을 이용한 Lactobacillus paracasei SRCM201474의 생산배지 최적화)

  • Ha, Gwangsu;Kim, JinWon;Im, Sua;Shin, Su-Jin;Yang, Hee-Jong;Jeong, Do-Youn
    • Journal of Life Science
    • /
    • v.30 no.6
    • /
    • pp.522-531
    • /
    • 2020
  • The aim of this study was to establish the optimal medium composition for enhancing L(+)-lactic acid (LLA) production using response surface methodology (RSM). Lactobacillus paracasei SRCM201474 was selected as the LLA producer by productivity analysis from nine candidates isolated from kimchi and identified by 16S rRNA gene sequencing. Plackett-Burman design was used to assess the effect of eleven media components on LLA production, including carbon (glucose, sucrose, molasses), nitrogen (yeast extract, peptone, tryptone, beef extract), and mineral (NaCl, K2HPO4, MgSO4, MnSO4) materials. Glucose, sucrose, molasses, and peptone were subsequently chosen as promising media for further optimization studies, and a hybrid design experiment was used to establish their optimal concentrations as glucose 15.48 g/l, sucrose 16.73 g/l, molasses 39.09 g/l, and peptone 34.91 g/l. The coefficient of determination of the equation derived from RSM regression for LLA production was mathematically reliable at 0.9969. At optimum parameters, 33.38 g/l of maximum LLA increased by 193% when compared with MRS broth as unoptimized medium (17.66 g/l). Our statistical model was confirmed by subsequent validation experiments. Increasing the performance of LLA-producing microorganisms and establishing an effective LLA fermentation process can be of particular benefit for bioplastic technologies and industrial applications.

Potential Probiotic Properties of Exopolysaccharide Producing Lactic Acid Bacteria Isolated from Fermented Soybean Product (장류유래 Exopolysaccharide 생성 유산균의 잠재적 Probiotic 특성)

  • Ahn, Yu-Jin;Choi, Hye-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.5
    • /
    • pp.749-755
    • /
    • 2014
  • Exopolysaccharides (EPSs) have been widely used in the food industry as viscofying, stabilizing, and emulsifying agents as well as in the pharmaceutical industry for their immunomodulatory, anti-tumor, and anti-inflammatory effects. A total of 458 lactic acid bacteria (LAB) strains isolated from several kinds of soybean pastes were screened for the production of homo-EPS (HoPS). LAB isolates were primarily screened using thin layer chromatography (TLC) and further screened polymerase chain reaction (PCR) targeting genes involved in HoPS production. Six LAB isolates producing high amounts of HoPS were identified by TLC. Among these isolates, glucansucrase gene was amplified in two strains (JSA57, JSB22), whereas the fructansucrase gene was detected in three strains (JSA57, JSB22, JSB66). After isolating the strains, their morphological characteristics and 16S rDNA sequences were determined. Six species were identified as L. alimentarius HSB15, L. plantarum JSA22, L. pentosus JSA57, L. brevis JSB22, L. alimentarius JSB66, and L. parabrevis JSB89. To evaluate the potential probiotic properties of these LAB, their survival rates against a simulated intestinal environment were determined. After 2 hr of incubation in artificial gastric juice, survival rates of JSA57, JSB90, JSB22, and JSB66 were all greater than 50%. After 2 hr of incubation in bile juice, viable cell count of JSB22 was similar with initial vial cell counts. Growth of the six LAB was screened in arabino-oligosaccharide (AOS)-containing MRS broth. Results showed that growth of the isolates selectively increased after culture in AOS-containing media. Strain JSB22 (6 hr), JSB66 (6 hr), HSB15 (20 hr), and JSA22 (29 hr) showed maximum growth rate. Especially, JSB22 showed the highest growth rate. These results suggest that EPS-producing LAB isolated from Deonjang could be applied as synbiotics.

Effects of Potassium Sorbate on the Growth of Yogurt Starter and Contaminant Yeast (Potassium Sorbate가 요구르트 Starter와 오염 Yeast의 성장에 미치는 영향)

  • Lim, Yong-Sook;Lee, Shin-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.5
    • /
    • pp.534-538
    • /
    • 1992
  • This study was carried out to investigate the effect of potassium sorbate on the growth of yogurt starter and contaminant yeast. Yogurt starter was isolated using 9 company of market yogurt and 10 strains of contaminant yeast was isolated in swollen yogurt after incubated for 7 days at $25^{\circ}C.$ The growth of isolated starter was inhibited by 0.3% of potassium sorbate except starter-H. Most isolated yeast was inhibited by the 0.1% of potassium sorbate. The growth of yeast-9 was the most inhibited among isolated yeast. The growth of selected starter-H was similiar to that of control in MRS broth containing 0.3% of potassium sorbate. 0.3% of potassium sorbate did not affect the growth of selected starter-H incubated with selected yeast-9 in skimmilk at $37^{\circ}C$ for 48hr, whereas, the growth of yeast-9 did not occur during incubation. The viable cell change of starter-H in yogurt contaminated with selected yeast-9 was not observed at $4{\pm}1{\circ}C$ for 7 days and the contaminant inhibited in 0.3% potassium sorbate containing yogurt during storage at $25^{\circ}C.$

  • PDF

Physiological Properties of Lactobacillus acidophilus 30SC Exposed to Heat Shock Stress (Heat Shock Stress에 의한 Lactobacillus acidophilus 30SC의 생리적 특성)

  • Moon, Yong-Il;Han, Soo-Min;Park, Dong-Jun;Chi, Youn-Tae;Kim, Kwang-Hyun;Oh, Sejong
    • Food Science of Animal Resources
    • /
    • v.25 no.3
    • /
    • pp.350-356
    • /
    • 2005
  • We examined the enhancement of thermotolerance for storage conferred on Lactobacillus acidophilus 30SC by adaptation to different stresses. The viable cells of Lactobacillus acidophilus 30SC were compared with their viability prior to heating at $45,\;55^{\circ}C\;and\;60^{\circ}C$. Heat-adapted ($45^{\circ}C$ for 15 min) L. acidophilus 30SC in MRS broth exhibited higher survivability at lethal temperature of $55^{\circ}C$ than control. Cellular protein profiles of L. acidophilus 30SC during heat adaptation were examined with SDS-PAGE, and scanning electron microscopy. When L. acidophilus 30SC was heat-adapted at $55^{\circ}C$ for 15min, 5 new protein spots of ca $8\~45\;kDa$ size were observed on 2D SDS-PAGE. It was presumed that new proteins of L. acidophilus 30SC were produced to adapt to the environment of higher growth temperature.

Functional Characteristics of Enterococcus faecium SA5 and Its Potential in Conversion of Ginsenoside Rb1 in Ginseng (Enterococcus faecium SA5의 기능적 특성과 인삼 ginsenoside Rb1의 전환)

  • Kim, Eun-Ah;Renchinkhand, Gereltuya;Urgamal, Magsal;Park, Young W.;Nam, Myoung Soo
    • Journal of Life Science
    • /
    • v.27 no.2
    • /
    • pp.172-179
    • /
    • 2017
  • The fermentation of Panax ginseng can yield many compounds from ginsenosides that have a wide variety of biological functions. Lactic acid bacteria (LAB) strains are capable of converting ginsenosides. The purposes of this study were to: (1) characterize Enterococcus faecium SA5, an isolated LAB from Mongolian mare milk, (2) identify the existence of extracellular ${\beta}$-glucosidase activity in the milk, and (3) ascertain if the ${\beta}$-glucosidase has the capacity of converting ginsenoside in Korean ginseng. The results revealed that E. faecium SA5 was acid-resistant, bile salt-resistant, and has antibiotic activities against 4 pathogenic microorganisms (Salmonella typhimurium KCTC 3216, Listeria monocytogenes KCTC 3710, Bacillus cereus KCTC 1012, Staphylococcus aureus KCTC 1621). In addition, E. faecium SA5 had tolerance against some antibiotics such as colistin, gentamycin and neomycin. It was also found that E. faecium SA5 possessed bile salt hydrolase activity, which could lower blood cholesterol level. When incubated in 10% (w/v) skim milk as a yogurt starter, E. faecium SA5 caused to decrease pH of the medium as well as increase in viable cell counts. Using TLC and HPLC analysis on the samples incubated in MRS broth, our study confirmed that E. faecium SA5 can produce ${\beta}$-glucosidase, which was capable of converting ginsenoside $Rb_1$ into new ginsenosides $Rg_3-s$ and $Rg_3-r$. It was concluded that E. faecium SA5 possessed a potential of probiotic activity, which could be applied to yogurt manufacture as well as ginsenoside conversion in ginseng.

Development of a new lactic acid bacterial inoculant for fresh rice straw silage

  • Kim, Jong Geun;Ham, Jun Sang;Li, Yu Wei;Park, Hyung Soo;Huh, Chul-Sung;Park, Byung-Chul
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.7
    • /
    • pp.950-956
    • /
    • 2017
  • Objective: Effects of newly isolated Lactobacillus plantarum on the fermentation and chemical composition of fresh rice straw silage was evaluated in this study. Methods: Lactic acid bacteria (LAB) from good crop silage were screened by growing them in MRS broth and a minimal medium with low carbohydrate content. Selected LAB (LAB 1821) were Gram-positive, rods, catalase negative, and were identified to be Lactobacillus plantarum based on their biochemical characteristics and a 16S rRNA analysis. Fresh rice straw was ensiled with two isolated LAB (1821 and 1841), two commercial inoculants (HM/F and P1132) and no additive as a control. Results: After 2 months of storage at ambient temperature, rice straw silages treated with additives were well-preserved, the pH values and butyric and acetic acid contents were lower, and the lactic acid content and lactic/acetic acid ratio were higher than those in the control (p<0.05). Acidity (pH) was lowest, and lactic acid highest, in 1821-treated silage (p<0.05). The $NH_3-N$ content decreased significantly in inoculant-treated silage (p<0.05) and the $NH_3-N$ content in 1821-treated silage was lowest among the treatments. The dry matter (DM) content of the control silage was lower than that of fresh rice straw (p<0.05), while that of the 1841- and p1174-inoculant-treated silages was significantly higher than that of HM/F-treated silage. Microbial additives did not have any significant (p>0.05) effect on acid detergent fiber or neutral detergent fiber contents. Crude protein (CP) content and in vitro DM digestibility (IVDMD) increased after inoculation of LAB 1821 (p<0.05). Conclusion: LAB 1821 increased the CP, IVDMD, lactic acid content and ratio of lactic acid to acetic acid in rice straw silage and decreased the pH, acetic acid, $NH_3-N$, and butyric acid contents. Therefore, adding LAB 1821 improved the fermentation quality and feed value of rice straw silage.

A Comparative Study between Microbial Fermentation and Non-Fermentation on Biological Activities of Medicinal Plants, with Emphasis on Enteric Methane Reduction (천연 약용식물의 미생물 발효를 통한 장내 메탄 생성 억제 효과 비교 연구)

  • Lee, A-Leum;Park, Hae-Ryoung;Kim, Mi-So;Cho, Sangbuem;Choi, Nag-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.4
    • /
    • pp.801-813
    • /
    • 2014
  • A study was conducted to improve the biological activity of two medicinal plants, Eucommia ulmoides Oliv. and Glycyrrhiza uralensis, by fermentation. The biological activity was assessed by determining antibacterial, antioxidant and antimethanogenic properties. Fermentation was achieved by adding the plant materials in MRS broth at 10% (w/v) and different starter cultures at 1% (v/v). Condition for fermentation were incubation temperature of $30^{\circ}C$ and agitation at 150 rpm for 48 h. Six starter cultures, Weissella confusa NJ28 (Genbank accession number KJ914897), Weissella cibaria NJ33 (Genbank accession number KJ914898), Lactobacillus curvatus NJ40 (Genbank accession number KJ914899), Lactobacillus brevis NJ42 (Genbank accession number KJ914900), Lactobacillus plantarum NJ45 (Genbank accession number KJ914901) and Lactobacillus sakei NJ48 (Genbank accession number KJ914902) were used. Antibacterial activity was observed in L. curvatus NJ40 and L. plantarum NJ45 only as opposed to other treatments, including the non-fermented groups, which showed no antibacterial activity. Both plants showed antioxidant activity, although E. ulmoides Oliv. had lower activity than G. uralensis. However, fermentation by all strains significantly improved (p<0.05), antioxidant activity in both plants compared to non-fermented treatment. Six treatments were based on antibacterial activity results, selected for in vitro rumen fermentation; 1) non-fermented E. ulmoides, 2) fermented E. ulmoides NJ40, 3) fermented E. ulmoides NJ45, 4) non-fermented G. uralensis, 5) fermented G. uralensis NJ40, 6) fermented G. uralensis NJ45. A negative control was also added, making a total of 7 treatments for the in vitro experiment. Medicinal plant-based treatments significantly improved (p<0.05) total volatile fatty acid (VFA) concentration. Significant methane reduction per mol of VFA were observed in G. uralensis (p<0.05). Based on the present study, fermentation improves the biological activity of E. ulmoides Oliv. and G. uralensis. Fermented G. uralensis could also be applied as an enteric methane mitigating agent in ruminant animals.

Fermentation of Chinese Cabbage Kimchi Soaked with L. acidophilus and Cleaned Materials by Ozone (오존처리 청정재료와 L. acidophilus를 이용한 배추김치의 숙성)

  • 김미정;오영애;김미향;김미경;김순동
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.2
    • /
    • pp.165-174
    • /
    • 1993
  • This work was conducted to study the use of L. acidophilus, which exists in humun intestine for the fermentation of Chinese cabbage kimchi. The changes in vitamins, the number of microflora and sensory quality were observed during fermentation after the microflora which was not related to kimchi fermentation was eliminated by treatment with ozone water or ozone gas. The growth rate of L. acidophilus in the cabbage juice was higher than that in MRS broth. The growth of L. acidophilus was slightly promoted by adding 1~2% hot pepper powder while that was inhibited by ginger and garlic. Therefore, it was shown that the regulation of fermentation was possible by addition of spices. The result of treating spice with ozone gas and ozone water 6mg/L/sec for 1 hour was that the survival ratio of total microflora was 6~20%. When L. acidophilus was added to materials after ozone treatment, the fermentation rate was improved and the polysaccharides in the cell wall were used when the usable free sugar was all consumed. The contents of vitamin B$_1$ and C in the ozone treated kimchi was higher than in the control.

  • PDF

The Growth-Promoting Effect of Pomegranate Concentrates on Lactic Acid Bacteria and Their Application to Yogurt (석류 농축액의 유산균에 대한 성장촉진효과와 요구르트의 적용)

  • Yun Jeong Go;Woan Sub Kim
    • Journal of Dairy Science and Biotechnology
    • /
    • v.41 no.2
    • /
    • pp.76-85
    • /
    • 2023
  • This study investigated the effect of the addition of pomegranate concentrate to yogurt on the growth of pathogenic and lactic acid bacteria. The concentration of the MRS broth was adjusted to one-half and used for an experiment. Pomegranate concentrate was added at concentrations of 4%, 2%, 1%, and 0.5%, which significantly promoted the growth of Lacto-coccus cremoris, Weissella cibaria, Weissella paramesenteroides, Lactobacillus plantarum, Lactobacillus acidophilus, Streptococcus thermophillus, Lactobacillus bulgaricus, and Lactobacillus lactis. The growth of lactic acid bacteria increased with higher concentrations of pomegranate. However, the addition of pomegranate concentrate inhibited the growth of Escherichia coli KCCM11587, E. coli KCCM11591, E. coli KCCM11596, and E. coliKCCM11600. Yogurt with added pomegranate concentrate demonstrated optimal conditions compared to that of the control without the addition. Particularly, the viable cell count of lactic acid bacteria was significantly higher in the yogurt with pomegranate concentrate. Furthermore, the viability of the lactic acid bacteria in the yogurt with pomegranate concentrate was higher than that of the control without the addition of concentrate during storage.

Production of γ-amino Butyric Acid by Lactic Acid Bacteria in Skim Milk (탈지방우유에서 가바생성 유산균 배양을 통한 가바생성 연구)

  • Cha, Jin Young;Kim, Young Rok;Beck, Bo Ram;Park, Ji Hun;Hwang, Cher Won;Do, Hyung Ki
    • Journal of Life Science
    • /
    • v.28 no.2
    • /
    • pp.223-228
    • /
    • 2018
  • Lactic acid bacteria were isolated from a variety of fermented seafoods and sea creatures from the East Sea Rim, Korea and were screened for ${\gamma}-amino$ butyric acid-producing (GABA) activity. Through a 16S rRNA sequence analysis, the bacteria of interest, which were GABA-positive on the thin-layer chromatography analysis, were recognized as three isolates of Lactobacillus (Lb.) brevis and one isolate of Lactococcus (Lc.) lactis. Lb. brevis FSFL0004 and FSFL0005 were isolated from fermented anglerfish and Lb. brevis FSFL0036 was derived from salted cutlass fish. The Lc. lactis strain FGL0007 was isolated from the gut of a brown sole flounder. According to HPLC analysis, the GABA contents produced by FSFL0004, FSFL0005, FSFL0036 and FGL0007 were equivalent to $10,754.37{\mu}g/ml$, $13,082.79{\mu}g/ml$, $12,290.19{\mu}g/ml$, and $45.07{\mu}g/ml$ respectively in 1% monosodium glutamate-supplemented methionyl-tRNA synthetase (MRS) broth. The four strains were inoculated in skim milk with 1% monosodium glutamate to commercialize the strains as starter cultures for GABA-enriched dairy products, and TLC results displayed the production of ${\gamma}-amino$ butyric acid by all four strains in the adaptation media. Lc. lactis FGL0007 demonstrated the greatest GABA production ($431.42{\mu}g/ml$) by HPLC analysis. The GABA production by lactic acid bacteria strains in the skim milk demonstrated in the present study may be helpful for the production of GABA-enriched dairy products.