• Title/Summary/Keyword: MRI magnet

Search Result 84, Processing Time 0.019 seconds

Optimal Design of an MRI Device Considering the Homogeneity of the Magnetic Field (자기장의 균일성을 고려한 자기공명장치의 최적설계)

  • Lee, Jung-Hoon;Yoo, Jeong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.8
    • /
    • pp.654-659
    • /
    • 2008
  • This paper is to suggest a concept design of the permanent magnet type magnetic resonance imaging (MRI) device based on the parameter optimization method. Pulse currents in the gradient coils will introduce the effect of eddy currents in the ferromagnetic material, which will worsen the quality of imaging. In order to equalize the magnetic flux in the MRI device for good imaging, the eddy current effect in the ferromagnetic material must be taken into account. This study attempts to use the design of experiment (DOE) and the response surface method (RSM) for equalizing the magnetic flux of the permanent magnet type MRI device using that the magnetic flux can be calculated directly using a commercial finite element analysis package. As a result, optimal shapes of the pole and the yoke of the PM type MRI device can be obtained. The commercial package, ANSYS, is used for analyzing the magnetic field problem and obtaining the resultant magnetic flux.

Design and manufacturing of the MRI Cryostat (MRI용 CRYOSTAT의 설계 제작)

  • Cho, Jeon-Wook;Lee, Eon-Yong;Kwon, Young-Kil;Ryu, Kang-Sik;Ryu, Choong-Sik;Kwon, Oh-Bum;Lee, Hong-Ju;Lee, Hai-Sung;Fukui, T.;Komoshita, T.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.144-146
    • /
    • 1995
  • A superconducting 2 tesla MRI magnet for the animal magnetic resonance imaging has been developed as a basic model for the application of the precise supercoducting magnet technology. MRI cryostat with 210mm room temperature bore was designed and manufactured for this magnet. The cryostat was designed basically not only to extract the principal design parameters at the performance test but also for the convenience of the manufacturing. The most extinct feacture of the cryostat is that it does not have $LN_{2}$ tank and the 77K thermal shield is cooled by circuling $LN_{2}$ through copper pipe which is welded around the shield plate. It results in reduction of the total cryostat size(about 30%).

  • PDF

Magnetic Field Distributions of Superconducting MRI Magnet in Insert Dewar (Insert dewar를 이용한 초전도 MRI 마그네트의 자장분포 평가)

  • Jin, H.B.;Oh, B.H.;Kwon, Y.G.;Oh, S.S.;Cho, J.W.;Ha, D.W.;Lee, E.Y.;Ryu, K.W.;Ryu, K.S.;Hahn, I.Y.;Nah, W.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.137-140
    • /
    • 1995
  • This paper describes the test results of magnetic field distributions of superconducting MRI magnet in an insert dewar. To get a very high homogeneous magnetic field, various shim coils are installed besides the main magnet. The operating currents of each shim coils are obtained from the exact measurements of the magnetic field. In this paper, we report the test results of the magnetic field distribution measurements with various shim coils.

  • PDF

Design and Implementation of Portable NMR Probe Magnet

  • Junxia, Gao;Yiming, Zhang;Jiashen, Tian
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.14-22
    • /
    • 2017
  • The NMR's probe consists of the static magnetic field generator (magnetic source) and the RF coil. It is very strict for the homogeneity of the static magnetic field intensity of the magnetic source, so the cost of the magnetic source is more expensive in the entire nuclear magnetic resonance instrument. The magnetic source generally consists of electromagnet, permanent magnet and superconducting magnet. The permanent magnet basically needs not to spend on operation and maintenance and its cost of manufacture is much cheaper than the superconducting magnet. Therefore, the permanent magnet may be the only choice for the static magnetic field device if we want to use the magnetic resonance instrument as an analyzer for production by reducing price. A new probe magnet was developed on the basis of the permanent magnet ring in this paper to provide a technological way for reducing the manufacturing cost, weight and volume of the existing nuclear magnetic resonance instrument (including MRI) probe.

Study on NbTi superconducting joint process for high field MRI magnet (고자장 MRI 마그네트를 위한 NbTi 초전도 접합 공정 연구)

  • 하동우;오상수;하홍수;이남진;고락길;권영길;류강식
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.165-167
    • /
    • 2002
  • NbTi/Cu superconducting wires were jointed inserting the NbTi filaments into Cu/NbTi sleeve and pressing it. When the NbTi filaments were inserted into Cu/NbTi sleeve, additional NbTi filaments were inserted together to increase the numbers of filaments in the hole of sleeve. Critical current of the joint of 28 filaments wires with 1.7 mm thickness of dimple was 450 A at 4.2K, 0.5T. Ic of the joint of 54 filaments wires with 2.0 mm thickness of dimple was 600 A at 4.2K, 2T. It is possible to manufacture MRI magnet by using these results.

  • PDF

Fabrication and Characterization of NbTi Superconduction wire for MRI (MRI용 NbTi 초전도선재 제조 및 초전도 특성 평가)

  • Ha, D.W.;Oh, S.S.;Ryu, K.S.;Han, I.Y.;Lee, C.K.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1494-1496
    • /
    • 1997
  • The MRI Magnet is a most practical application of NbTi superconductor. In this paper, we present the main research results on superconducting wires for MRI magnet which we have developed. Cu/NbTi superconducting wires were fabricated by repeat of cold working and heat-treating process after that billets were extruded. We investigated the relation of superconductivities of wires and heat treatment condition. The correlation between cross section shape of wires and work inhomogeneity of NbTi rods was investigated by microscopic observation. The more repeatation number of cold working and heat-treating process, the higher critical current is achieved.

  • PDF

A Study on Joint Resistance between Nb-Ti Superconducting Wires for MRI Magnet

  • Oh, Sang-Soo;Yingming Dai;Ha, Dong-Woo;Jang, Hyun-Man;Ryu, Kang-Sik
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.90-94
    • /
    • 1997
  • The joints between the superconducting wires are inevitably needed from the requirement of a high magnetic stability with respect to time in the superconducting MRI magnet. In this study, a new superconducting joint using Cu/Nb-Ti sleeve has been tried on the MRI type Nb-Ti superconducting wires. The transformer induction type apparatus was made and applied to measure the joint resistance. A very low joint resistance of 10\ulcorner $\Omega$ could be successfully obtained from this joint method. It was confirmed that the initial rapid current decay occurs before the very stable current decay due to only superconducting joint. Some unstable part in the joint like exposed filaments causes the initial induced current to lower and influence on the increase of the joint resistance.

  • PDF

Fundamental characteristic analysis on 6 T-class high-temperature superconducting no-insulation magnet using turn-distributed equivalent circuit model

  • Liu, Q.;Choia, J.;Sim, K.;Kim, S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.4
    • /
    • pp.44-48
    • /
    • 2021
  • In order to obtain ultra-high resolution MRI images, research and development of 11 T or higher superconducting magnets have been actively conducted in the world, recently. The high-temperature superconductor (HTS), first discovered in 1986, was very limited in industrial application until mid-2010, despite its high critical current characteristics in the high magnetic field compared to the low-temperature superconductor. This is because HTS magnets were unable to operate stably due to the thermal damage when a quench occurred. With the introduction of no-insulation (NI) HTS magnet winding technology that does not burn electrically, it could be expected that the HTS magnets are dramatically reduced in weight, volume, and cost. In this paper, a 6 T-class NI HTS magnet for basic characteristic analysis was designed, and a distributed equivalent circuit model of the NI coils was configured to analyze the charging current characteristics caused by excitation current, and the charge delay phenomenon and loss were predicted through the development of a simulation model. Additionally, the critical current of the NI HTS magnets was estimated, considering the magnetic field, its angle and temperature with a given current. The loss due to charging delay characteristics was analyzed and the result was shown. It is meaningful to obtain detailed operation technology to secure a stable operation protocol for a 6T NI HTS magnet which is actually manufactured.

Effect of sensor positioning error on the accuracy of magnetic field mapping result for NMR/MRI

  • Huang, Li;Lee, Sangjin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.3
    • /
    • pp.28-32
    • /
    • 2015
  • Nowadays the magnetic field mapping is widely used in the design and analysis of the NMR/MRI magnet system, and the accuracy of mapping result has become more and more important. There are several factors affecting the accuracy of the mapping such as the mapping method, the precision of the sensor, the position of the measurement points, the calculation accuracy, and so on. In this paper the error due to the misalignment of the measurement points was discussed. The magnetic field in the central volume was mapped using an indirect method in an MRI magnet system and the magnetic field was fitted to a polynomial. Considering the misalignment between the original measurement points and the practical measurement points, there must be some errors in the mapping calculation and we called it positioning error. Several comparisons of the positioning error have been presented through the theoretical estimates and the exact magnetic field values. Finally, the allowable positioning errors were suggested to guarantee the accuracy of the magnetic field mapping within a certain degree for an example case.

Shape Optimization for Magnetic Pole Piece of PM MRI using Nonlinear Parameterized Sensitivity Analysis (매개화된 민감도 해석에 의한 PM MRI의 Pole Piece 형상 최적화)

  • Ryu, Jae-Seop;Koh, Chang-Seop
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.70-72
    • /
    • 2004
  • The ferromagnetic pole piece of permanent magnet assembly for magnetic resonance imaging(MRI) is optimally designed to get high homogenious magnetic field, taking into account the non-linearity of the magnetic materials. In the design, the pole face is kept smooth and axis-symmetric by using B-spline parameterization, and nonlinear design sensitivity analysis is used for search direction.

  • PDF