• Title/Summary/Keyword: MRI/PET

Search Result 230, Processing Time 0.024 seconds

Nuclear Medicine Imaging Diagnosis in Infectious Bone Diseases (감염성 골질환의 핵의학 영상진단)

  • Choi, Yun-Young
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.4
    • /
    • pp.193-199
    • /
    • 2006
  • Infectious and inflammatory bone diseases include a wide range of disease process, depending on the patient's age, location of infection, various causative organisms, duration from symtom onset, accompanied fracture or prior surgery, prosthesis insertion, and underlying systemic disease such as diabetes, etc. Bone infection may induce massive destruction of bones and joints, results in functional reduction and disability. The key to successful management is early diagnosis and proper treatment. Various radionuclide imaging methods including three phase bone scan, Ga-67 scan, WBC scan, and combined imaging techniques such as bone/Ga-67 scan, WBC/bone marrow scan add complementary role to the radiologic imaging modalities including plain radiography, CT and MRI. F-18 FDG PET imaging also has recently been introduced in diagnosis of infected prosthesis and chronic active osteomyelitis. Selection of proper nuclear medicine imaging method will improve the diagnostic accuracy of infections and inflammatory bone diseases, based on understading of pathogenesis and radiologic imaging findings.

The Human Brain and Information Science: Lessons from Popular Neuroscience

  • Sturges, Paul
    • International Journal of Knowledge Content Development & Technology
    • /
    • v.3 no.1
    • /
    • pp.19-29
    • /
    • 2013
  • Insights from the recent wealth of popular books on neuroscience are offered to suggest a strengthening of theory in information science. Information theory has traditionally neglected the human dimension in favour of 'scientific' theory often derived from the Shannon-Weaver model. Neuroscientists argue in excitingly fresh ways from the evidence of case studies, non-intrusive experimentation and the measurements that can be obtained from technologies that include electroencephalography, positron emission tomography (PET), functional magnetic resonance imaging (fMRI), and magnetoencephalography (MEG). The way in which the findings of neuroscience intersect with ideas such as those of Kahneman on fast and slow thinking and Csikszentmihalyi on flow, is tentatively explored as lines of connection with information science. It is argued that the beginnings of a theoretical underpinning for current web-based information searching in relation to established information retrieval methods can be drawn from this.

Design of Wireless EEG Measurement System for the Brain Machine Interface (뇌 기계 인터페이스를 위한 무선 EEG 측정 장치 설계)

  • Kim, D.W.;Beack, S.H.;Paek, S.E.;Kwon, S.T.;Moon, D.Y.;Park, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1912-1913
    • /
    • 2007
  • 뇌 기계 인터페이스는 뇌에 직접 연결을 시도하는 인터페이스로서 인간의 의지 또는 생각을 컴퓨터가 인식할 수 있는 디지털 신호로 바꾸는 새로운 휴먼 컴퓨터 인터페이스 중 하나이다. 뇌신경의 신호 전달 과정이 전기적, 화학적 특성을 지닌다는 사실에 착안하여 뇌의 활동을 측정하는 많은 기술들이 개발되어 왔다. PET, fMRI, MEG, EEG 등을 포괄하는 brain functional imaging 기술 중 뇌 기계 인터페이스에서 가장 주목하고 있는 것이 바로 EEG 이다. 본 연구에서는 뇌기계 인터페이스 시스템 개발에 필요한 무선 EEG 측정 장치를 설계하고, 무선 EEG 측정 장치와 컴퓨터간에 데이터 전송과 EEG 신호를 FFT 분석 하였다.

  • PDF

Metastasis of Rhabdomyosarcoma to the Male Breast: a Case Report with Magnetic Resonance Imaging Findings

  • Kim, Myeongjong;Kang, Bong Joo;Park, Ga Eun;Kim, Sung Hun;Lee, Jeongmin;Lee, Ahwon
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.1
    • /
    • pp.75-80
    • /
    • 2019
  • Metastasis of rhabdomysarcoma to the breast is a very rare manifestation in adult males. Herein, we report a case of metastasis from embryonal rhabdomyosarcoma in the left hypothenar muscle that presented as a breast mass in a 38-year-old man, who four months later expired because of multiple bone metastases related to pancytopenia. We describe the various imaging findings, including mammograms, ultrasonography, computerized tomography (CT), positron emission tomography-computed tomography (PET-CT), and magnetic resonance imaging (MRI) of this rare disease. The various imaging findings of this lesion could be helpful for future diagnosis of male breast lesions.

A brief review of non-invasive brain imaging technologies and the near-infrared optical bioimaging

  • Beomsue Kim;Hongmin Kim;Songhui Kim;Young-ran Hwang
    • Applied Microscopy
    • /
    • v.51
    • /
    • pp.9.1-9.10
    • /
    • 2021
  • Brain disorders seriously affect life quality. Therefore, non-invasive neuroimaging has received attention to monitoring and early diagnosing neural disorders to prevent their progress to a severe level. This short review briefly describes the current MRI and PET/CT techniques developed for non-invasive neuroimaging and the future direction of optical imaging techniques to achieve higher resolution and specificity using the second near-infrared (NIR-II) region of wavelength with organic molecules.

Brain Metabolic Network Redistribution in Patients with White Matter Hyperintensities on MRI Analyzed with an Individualized Index Derived from 18F-FDG-PET/MRI

  • Jie Ma;Xu-Yun Hua;Mou-Xiong Zheng;Jia-Jia Wu;Bei-Bei Huo;Xiang-Xin Xing;Xin Gao;Han Zhang;Jian-Guang Xu
    • Korean Journal of Radiology
    • /
    • v.23 no.10
    • /
    • pp.986-997
    • /
    • 2022
  • Objective: Whether metabolic redistribution occurs in patients with white matter hyperintensities (WMHs) on magnetic resonance imaging (MRI) is unknown. This study aimed 1) to propose a measure of the brain metabolic network for an individual patient and preliminarily apply it to identify impaired metabolic networks in patients with WMHs, and 2) to explore the clinical and imaging features of metabolic redistribution in patients with WMHs. Materials and Methods: This study included 50 patients with WMHs and 70 healthy controls (HCs) who underwent 18F-fluorodeoxyglucose-positron emission tomography/MRI. Various global property parameters according to graph theory and an individual parameter of brain metabolic network called "individual contribution index" were obtained. Parameter values were compared between the WMH and HC groups. The performance of the parameters in discriminating between the two groups was assessed using the area under the receiver operating characteristic curve (AUC). The correlation between the individual contribution index and Fazekas score was assessed, and the interaction between age and individual contribution index was determined. A generalized linear model was fitted with the individual contribution index as the dependent variable and the mean standardized uptake value (SUVmean) of nodes in the whole-brain network or seven classic functional networks as independent variables to determine their association. Results: The means ± standard deviations of the individual contribution index were (0.697 ± 10.9) × 10-3 and (0.0967 ± 0.0545) × 10-3 in the WMH and HC groups, respectively (p < 0.001). The AUC of the individual contribution index was 0.864 (95% confidence interval, 0.785-0.943). A positive correlation was identified between the individual contribution index and the Fazekas scores in patients with WMHs (r = 0.57, p < 0.001). Age and individual contribution index demonstrated a significant interaction effect on the Fazekas score. A significant direct association was observed between the individual contribution index and the SUVmean of the limbic network (p < 0.001). Conclusion: The individual contribution index may demonstrate the redistribution of the brain metabolic network in patients with WMHs.

The Differentiation of Benign from Maligant Soft Tissue Lesions using FDG-PET: Comparison between Semi-quantitative Indices (FDG-PET을 이용한 악성과 양성 연부조직 병변의 감별: 반정량적 지표간의 비교)

  • Choi, Joon-Young;Lee, Kyung-Han;Choe, Yearn-Seong;Choi, Yong;Kim, Sang-Eun;Seo, Jai-Gon;Kim, Byung-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.31 no.1
    • /
    • pp.90-101
    • /
    • 1997
  • The purpose of this study is to evaluate the diagnostic accuracy of various quantitative indices for the differentiation of benign from malignant primary soft tissue tumors by FDG-PET. A series of 32 patients with a variety of histologically or clinically confirmed benign (20) or malignant (12) soft tissue lesions were evaluated with emission whole body (5min/bed position) PET after injection of [$^{18}F$]FDG. Regional 20min transmission scan for the attenuation correction and calculation of SUV was performed in 16 patients (10 benign, 6malignant) followed by dynamic acquisition for 56min. Postinjection transmission scan for the attenuation correction and calculation of SUV was executed in the other 16 patients (10 benign, 6 malignant). The following indices were obtained. the peak and average SUV (pSUV, aSUV) of lesions, tumor-to-background ratio acquired at images of 51 min p.i. ($TBR_{51}$), tumor-to-background ratio of areas under time-activity curves ($TBR_{area}$) and the ratio between the activities of tumor ROI at 51 min p. i. and at the time which background ROI reaches maximum activity on the time-activity curves ($T_{51}/T_{max}$). The pSUV, aSUV, $TBR_{51}$, and $TBR_{area}$ in malignant lesions were significantly higher than those in benign lesions. We set the cut-off values of pSUV, aSUV, $TBR_{51},\;TBR_{area}$ and $T_{51}/T_{max}$ for the differentiation of benign and malignant lesions at 3.5, 2.8, 5.1, 4.3 and 1.55, respectively. The sensitivity, specificity and accuracy were 91.7%, 80.0%, 84.4% by pSUV and aSUV, 83.3%, 85.0%, 84.4% by $TBR_{51}$, 83.3%, 100%, 93.8% by $TBR_{area}$ and 66.7%, 70.0%, 68.8% by $T_{51}/T_{max}$. The time-activity curves did not give additional information compared to SUV or TBR. The one false negative was a case with low-grade fibrosarcoma and all four false positives were cases with inflammatory change on histology. The visual, analysis of FDG-PET also detected the metastatic lesions in malignant cases with comparable accuracy In conclusion, all pSUV, aSUV, $TBR_{51}$, and $TBR_{area}$ are useful metabolic semi-quantitative indices with good accuracy for the differentiation of benign from malignant soft-tissue lesions.

  • PDF

Multi-modality MEdical Image Registration based on Moment Information and Surface Distance (모멘트 정보와 표면거리 기반 다중 모달리티 의료영상 정합)

  • 최유주;김민정;박지영;윤현주;정명진;홍승봉;김명희
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.3_4
    • /
    • pp.224-238
    • /
    • 2004
  • Multi-modality image registration is a widely used image processing technique to obtain composite information from two different kinds of image sources. This study proposes an image registration method based on moment information and surface distance, which improves the previous surface-based registration method. The proposed method ensures stable registration results with low registration error without being subject to the initial position and direction of the object. In the preprocessing step, the surface points of the object are extracted, and then moment information is computed based on the surface points. Moment information is matched prior to fine registration based on the surface distance, in order to ensure stable registration results even when the initial positions and directions of the objects are very different. Moreover, surface comer sampling algorithm has been used in extracting representative surface points of the image to overcome the limits of the existed random sampling or systematic sampling methods. The proposed method has been applied to brain MRI(Magnetic Resonance Imaging) and PET(Positron Emission Tomography), and its accuracy and stability were verified through registration error ratio and visual inspection of the 2D/3D registration result images.

Ictal single-photon emission computed tomography with slow dye injection for determining primary epileptic foci in infantile spasms (영아연축에서 추적자의 느린 점적주사를 이용한 발작기 SPECT)

  • Hur, Yun Jung;Lee, Joon Soo;Kang, Hoon Chul;Park, Hye Jung;Yun, Mi Jin;Kim, Heung Dong
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.7
    • /
    • pp.804-810
    • /
    • 2009
  • Purpose : We investigated whether ictal single-photon emission computed tomography (SPECT) with prolonged injection of technetium-99m (99mTc) ethyl cysteinate dimer during repeated spasms can localize the epileptogenic foci in children with infantile spasms. Methods : Fourteen children with infantile spasms (11 boys, 3 girls; mean age, $2.2{\pm}1.3$ years) were examined. When a cluster of spasms was detected during video electroencephalography (EEG) monitoring, $^{99m}Tc$ ethyl cysteinate dimer was slowly and continuously injected for 2 minutes to determine the presence of ictal SPECT. For 7 children, the ictal and interictal SPECT images were visually analyzed, while for the remaining 7 children, the SPECT images were analyzed using the subtraction ictal SPECT coregistered to magnetic resonance imaging (MRI) (SISCOM) technique. Subsequently, we analyzed the association between the ictal SPECT findings and those of other diagnostic modalities such as EEG, MRI, and positron emission tomography (PET). Results : Increase in cerebral blood flow on ictal SPECT involved the epileptogenic foci in 10 cases6 cases analyzed by visual assessment and 4 analyzed by the SISCOM technique. The ictal SPECT and video-EEG findings showed moderate agreement (Kappa=0.57; 95% confidence interval, 0.18-0.96). Conclusion : Ictal SPECT with prolonged injection of a tracer could provide supplementary information to localize the epileptogenic foci in infantile spasms.

New Trend of Pain Evaluation by Brain Imaging Devices (뇌기능 영상장치를 이용한 통증의 평가)

  • Lee Sung-Jin;Bai Sun-Joon
    • Science of Emotion and Sensibility
    • /
    • v.8 no.4
    • /
    • pp.365-374
    • /
    • 2005
  • Pain has at least two dimensions such as somatosensory qualities and affect and patients are frequently asked to score the intensity of their pain on a numerical pain rating scale. However, the use of a undimensional scale is questionable in view of the belief, overwhelmingly supported by clinical experience as well as by empirical evidence from multidimensional scaling and other sources, that pain has multidimensions such as sensory-discrimitive, motivational-affective and cognitive-evaluative The study of pain has recently received much attention, especially in understanding its neurophysiology by using new brain imaging techniques, such as positron emission tomography(PET) and functional magnetic resonance imaging (fMRI), both of which allow us to visualize brain function in vivo. Also the new brainimaging devices allow us to evaluate the patients pain status and plan To treat patients objectively. Base4 on our findings we presented what are the new brain imaging devices and the results of study by using brain imaging devices.

  • PDF