This study was purpose to quantitative assessment of the resolution characteristics by using American college of radiology(ACR) phantom for magnetic resonance imaging (MRI). The MRI equipment was used (Achiva 3.0T MRI, Philips system, Netherlands) and the head/neck matrix shim SENSE head coil were 32 channels(elements) receive MR coil. And the MRI equipment was used (Discovery MR 750, 3.0T MRI, GE medical system, America) and the head/neck matrix shim MC 3003G-32R 32-CH head coil were receive MR coil. As for the modulation transfer function(MTF) comparison result by using ACR magnetic resonance imaging phantom, the MTF value of the ACR standard T2 image in GE equipment is 0.199 when the frequency is 1.0 mm-1 and the MTF value of the hospital T2 image in Philips equipment is 0.528. It was used efficiently by using a general sequence more than the standard sequence method using the ACR phantom. In addition it is significant that the quantitative quality assurance evaluation method for resolution characteristics was applied mutatis mutandis, and the result values of the physical image characteristics of the 3.0T MRI device were presented.
This study was purpose to quantitative evaluation of edge method of modulation transfer function(MTF) and physical image characteristics of by obtain the optimal edge image by using magnetic resonance imaging(MRI). The MRI equipment was used (MAGNETOM Vida 3.0T MRI, Siemense healthcare system, Germany) and the head/neck matrix shim MR coil were 20 channels(elements) receive coil. The MTF results of showed the best value of 0.294 based on the T2 Nyquist frequency of 1.0 mm-1. The MTF results of showed that the T1 image is 0.160, the T1 CE image is 0.250, T1 Conca2 image is 0.043, and the T1 CE (Concatenation) Conca2 image is 0.190. The T2 image highest quantitatively value for MTF. The physical image characteristics of this study were to that can be used efficiently of the MRI and to present the quantitative evaluation method and physical image characteristics of 3.0T MRI.
Functional MRI (fMRI) provides an indirect mapping of cerebral activity, based on the detection of the local blood flow and oxygenation changes following neuronal activity (Blood Oxygenation Level Dependent). fMRI allows us to study noninvasively the normal and pathological aspects of functional cortical organization. Each fMRI study compares two different states of activity. Echo-Planar Imaging is the technique that makes it possible to study the whole brain at a rapid pace. Activation maps are calculated from a statistical analysis of the local signal changes. fMRI is now becoming an essential tool in the neurofunctional evaluation of normal volunteers and many neurological patients as well as the reference method to image normal or pathologic functional brain organization.
Portable low-cost magnetic resonance imaging (MRI) systems have the potential to enable "point-of-care" and timely MRI diagnosis, and to make this imaging modality available to routine scans and to people in underdeveloped countries and areas. With simplicity, no maintenance, no power consumption, and low cost, permanent magnets/magnet arrays/magnet assemblies are attractive to be used as a source of static magnetic field to realize the portability and to lower the cost for an MRI scanner. However, when taking the canonical Fourier imaging approach and using linear gradient fields, homogeneous fields are required in a scanner, resulting in the facts that either a bulky magnet/magnet array is needed, or the imaging volume is too small to image an organ if the magnet/magnet array is scaled down to a portable size. Recently, with the progress on image reconstruction based on non-linear gradient field, static field patterns without spatial linearity can be used as spatial encoding magnetic fields (SEMs) to encode MRI signals for imaging. As a result, the requirements for the homogeneity of the static field can be relaxed, which allows permanent magnets/magnet arrays with reduced sizes, reduced weight to image a bigger volume covering organs such as a head. It offers opportunities of constructing a truly portable low-cost MRI scanner. For this exciting potential application, permanent magnets/magnet arrays have attracted increased attention recently. A magnet/magnet array is strongly associated with the imaging volume of an MRI scanner, image reconstruction methods, and RF excitation and RF coils, etc. through field patterns and field homogeneity. This paper offers a review of permanent magnets and magnet arrays of different kinds, especially those that can be used for spatial encoding towards the development of a portable and low-cost MRI system. It is aimed to familiarize the readers with relevant knowledge, literature, and the latest updates of the development on permanent magnets and magnet arrays for MRI. Perspectives on and challenges of using a permanent magnet/magnet array to supply a patterned static magnetic field, which does not have spatial linearity nor high field homogeneity, for image reconstruction in a portable setup are discussed.
Magnetic resonance imaging (MRI) is an imaging technique used to produce high quality images of the inside of the animal body. MRI is based on the principles of nuclear magnetic resonance (NMR) and started out as a tomographic imaging technique, that is it produced an image of the NMR signal in a thin slice through the animal body. The animal body is primarily fat and water, Fat and water have many hydrogen atoms. Hydrogen nuclei have an NMR signal. For these reasons magnetic resonance imaging primarily images the NMR signal from the hydrogen nuclei. Hydrogen protons, within the body align with the magnetic field. By applying short radio frequency (RF) pulses to a specific anatomical slice, the protons in the slice absorb energy at this resonant frequency causing them to spin perpendicular to the magnetic field. As the protons relax back into alignment with the magnetic field, a signal is received by an RF coil that acts as an antennae. This signal is processed by a computer to produce diagnostic images of the anatomical area of interest.
This study was purpose to quantitative evaluation of comparison of the image intensity uniformity and noise power spectrum (NPS) by using American college of radiology (ACR) phantom for magnetic resonance imaging (MRI). The MRI was used achiva 3.0T MRI and discovery MR 750, 3.0T, the head and neck matrix shim SENSE head coil were 32 channels receive MR coil. The MRI was used parameters of image sequence for ACR standard and general hospital. NPS value of the ACR standard T2 vertical image in GE equipment was 7.65E-06 when the frequency was 1.0 mm-1. And the NPS value of the ACR hospital T1 region of interest (ROI) 9 over all vertical image in Philips equipment was 9E-08 when the frequency was 1.0 mm-1 and the NPS value of the hospital T2 ROI 9 over all vertical image in Philips equipment was 1.06E-07 when the frequency was 1.0 mm-1. NPS was used efficiently by using a general hospital vertical sequence more than the standard vertical sequence method by using the ACR phantom. Furthermore NPS was the quantitative quality assurance (QA) assessment method for noise and image intensity uniformity characteristics was applied mutatis mutandis, and the results values of the physical imaging NPS of the 3.0T MRI and ACR phantom were presented.
Background: This study was designed to evaluate and compare the diagnostic value of magnetic resonance imaging (MRI) and indirect magnetic resonance arthrography (I-MRA) imaging with those of arthroscopy and each other. Methods: This descriptive-analytical study was conducted in 2020. All patients who tested positive for labrum lesions during that year were included in the study. The patients underwent conservative treatment for 6 weeks. In the event of no response to conservative treatment, MRI and I-MRA imaging were conducted, and the patients underwent arthroscopy to determine their ultimate diagnosis and treatment plan. Imaging results were assessed at a 1-week interval by an experienced musculoskeletal radiologist. Image interpretation results and arthroscopy were recorded in the data collection form. Results: Overall, 35 patients comprised the study. Based on the kappa coefficient, the results indicate that the results of both imaging methods are in agreement with the arthroscopic findings, but the I-MRA consensus rate is higher than that of MRI (0.612±0.157 and 0.749±0.101 vs. 0.449±0.160 and 0.603±0.113). The sensitivity, specificity, negative predictive value, positive predictive value, and accuracy of MRI in detecting labrum tears were 77.77%, 75.00%, 91.30%, 50.00%, and 77.14%, respectively, and those of I-MRA were 88.88%, 75.00%, 92.30%, 66.66%, and 85.71%. Conclusions: Here, I-MRA showed higher diagnostic value than MRI for labral tears. Therefore, it is recommended that I-MRA be used instead of MRI if there is an indication for potential labrum lesions.
MR(magnetic resonance) image of moving organ such as heart shows serious distortion of MR image due to motion itself. To eliminate motion artifacts, MRI(magnetic resonance imaging) scan sequences requires a trigger pulse like ECG(electro-cardiography) R-wave. ECG-gating using cardiac cycle synchronizes the MRI sequence acquisition to the R-wave in order to eliminate image motion artifacts. In this paper, we designed ECG/PPG(photo-plethysmography) gating system which is for eliminating motion artifacts due to moving organ. This system uses nonmagnetic carbon electrodes, lead wire and shield case for minimizing RF(radio-frequency) pulse and gradient effect. Also, we developed a ECG circuit for preventing saturation by magnetic field and a finger plethysmography sensor using optic fiber. And then, gating pulse is generated by adaptive filtering based on NLMS(normalized least mean square) algorithm. To evaluate the developed system, we measured and compared MR imaging of heart and neck with and without ECG/PPG gating system. As a result, we could get a clean image to be used in clinically. In conclusion, the designed ECG/PPG gating system could be useful method when we get MR imaging of moving organ like a heart.
Park, Ji Kang;Hong, Dae Young;Jin, Sun Tak;Lee, Dong-Woo;Pyun, Hae Wook
Investigative Magnetic Resonance Imaging
/
제24권3호
/
pp.154-161
/
2020
Purpose: A CT angiography spot sign (CTA-spot) is a significant predictor of the early expansion of an intracerebral hemorrhage (ICH-Ex). Dynamic-susceptibility-contrast magnetic resonance imaging (DSC-MRI) can track the real-time leaking of contrast agents. It may be able to indicate active bleeding, like a CTA-spot. Materials and Methods: From September 2014 to February 2017, we did non-contrast CT, CTA, and DSC-MRI examinations of seven patients with acute ICH. We investigated the time from symptom onset to the first contrast-enhanced imaging. We evaluated the time course of the contrast leak within the ICH at the source image of the DSC-MRI and the volume change of ICH between non-contrast CT and DSC-MRI. We compared the number of slices showing CTA-spots and DSC-MRI leaks. Results: The CTA-spot and DSC-MRI leak-sign were present in four patients, and two patients among those showed ICH-Ex. The time from the symptom onset to CTA or DSC-MRI was shorter for those with a DSC-MRI leak or CTA-spot than for three patients without either (70-130 minutes vs. 135-270 minutes). The leak-sign began earlier, lasted longer, and spread to more slices in the patients with ICH-Ex than in those without ICH-Ex. The number of slices of the DSC-MRI leak and the number of the CTA-spot were well correlated. Conclusion: DSC-MRI can demonstrate the leakage of GBCA within hyperacute ICH, showing the good contrast between hematoma and contrast. The DSC-MRI leakage sign could be related to the hematoma expansion in patients with ICH.
본 연구에서는 바이어스 필드에 의해 왜곡된 MRI 영상에 대한 분할을 위해 확장된 EM 알고리즘을 기반으로 한 통계적 접근법을 제시한다. 영상의 명암값을 자료로 하는 분할기법들은 고주파 성분의 잡음 뿐만 아니라 영상을 불균질하게 만드는 바이어스 필드라는 저주파 성분의 왜곡에 특히 취약하다. 이 문제를 해결하기 위해 본 논문에서는 잡음을 효과적으로 제어하기 위해 마코프랜덤필드가 적용된 정규혼합모형을 고려하며, 효과적인 바이어스 필드의 보정을 위해 페널티-우도를 도입하여 추정하는 방법으로 고안되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.