• Title/Summary/Keyword: MR damping

Search Result 211, Processing Time 0.025 seconds

A Study on The Vibration Reduction of a Driver Seat Controlling an MR Fluid Damper (자기유변유체 댐퍼를 이용한 운전석의 진동감쇠에 대한 연구)

  • 안병일;전도영
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.10
    • /
    • pp.861-866
    • /
    • 2002
  • A seat suspension system with a controlled MR(Magneto Rheological) fluid damper is introduced to improve the ride quality and prevent the health risk of a driver compared to fixed seats. The system is located between a seat cushion and the base, and is composed of a spring, MR fluid damper and controller. The MR fluid damper designed in valve mode is capable of producing a wide range of damping force according to applied currents. In experiments, a person was sitting on the controlled seat excited by a hydraulic system The skyhook control, continuous skyhook control and relative displacement control were applied and the continuous skyhook control improved the vibration suppression by 36.6%.

Improvement of Transient Response Characteristics of Pneumatic Manipulator using MR Brake (MR Brake를 이용한 공압 머니퓰레이터의 과도응답특성의 향상)

  • Ahn K.K.;Song J.Y.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.1 no.1
    • /
    • pp.17-22
    • /
    • 2004
  • The goal of this paper is to improve the position control performance of pneumatic rotary actuator with variable brake using Magneto-Rheological Fluid. The air compressibility and the lack of damping of the pneumatic actuator bring the dynamic delay of the pressure response and cause the oscillatory motion. In this study, a variable rotary brake comprising Magneto-Rheological Fluid is equipped to the joint of a pneumatic manipulator. Experiments of step response have proved that the transient response of the manipulator could be improved compared with that of the conventional control algorithm by using a phase plane switching control algorithm.

  • PDF

Semi-active vibration control using an MR damper (MR 댐퍼를 이용한 반능동식 진동 제어)

  • Jeon, Do-Yeong;Park, Chan-Ho;Yu, Jeong-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.1
    • /
    • pp.26-31
    • /
    • 1998
  • For the semiactive vibration control, a variable damper and proper control systems are essential. In this research, a controllable damper was designed using the MR fluids and its mechanical properties such as damping constant and response time were measured. Since the response time of the MR damper was much longer than nominal MR fluid response time, the time delay of the damper should be considered in the design of controllers. It is shown that the advanced On/Off vibration control which includes the damper time delay performs more effectively than the conventional one.

  • PDF

Seismic Response Fuzzy Control of Adjacent Building using Semi-active MR Dampers (준능동 MR 감쇠기를 이용한 인접빌딩의 지진응답 퍼지제어)

  • Ok, Seung-Yong;Kim, Dong-Seok;Park, Kwan-Soon;Koh, Hyun-Moo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.495-502
    • /
    • 2006
  • Seismic performance of semi-active fuzzy control algorithm to operate MR dampers for coupling adjacent building is investigated in this paper. In the proposed semi-active control technique, the fuzzy logic is used as a method to adjust input voltage to MR damper. In order to validate control performance of proposed technique, the seismic performance of the semi-active fuzzy control system is compared with that of passive control system where the input voltage to MR damper is set to display maximum damping force. The simulated results show that the semi-active fuzzy control technique effectively regulates the trade-off existing between seismic responses of two buildings subject to various earthquake excitations.

  • PDF

Performance Evaluation of Vibration Control of Adjacent Buildings According to Installation Location of MR damper (인접건축물의 진동제어를 위한 MR감쇠기의 위치 선정에 관한 연구)

  • Kim, Gee-Cheol;Kang, Joo-Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.1
    • /
    • pp.91-99
    • /
    • 2012
  • In recently, the vibration control of adjacent buildings have been studied and magneto-rheological(MR) fluid dampers have been applied to seismic response control. MR dampers can be controlled with small power supplies and the dynamic range of this damping force is quite large. This MR damper is one of semi-active dampers as a new class of smart dampers. In this study, vibration control effect according to the installation location of the MR damper connected adjacent buildings has been investigated. Adjacent building structures with different natural frequencies were used as example structures. Groundhook control model is applied to determinate control force of MR damper. In this numerical analysis, it has been shown that displacement responses can be effectively controlled as adjacent buildings are connected at roof floors by MR damper. And acceleration responses can be effectively reduced when two buildings are connected at the mid-stories of adjacent buildings by MR damper. Therefore, the installation floor of the MR damper should be selected with seismic response control target.

The design of low-power MR damper using permanent magnet (영구자석을 이용한 저전력형 MR 감쇠기의 설계)

  • Kim, Jung-Hoon;Oh, Jun-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.433-439
    • /
    • 2000
  • Lots of semi-active control devices have been developed in recent years because they have the best features of passive and active system. Especially, controllable magneto-rheological(MR) fluid devices have received significant attention in these area of research. The MR fluid is the material that reversibly changes from a free-flowing, linear viscous fluid to a semisolid with a controllable yield strength in milliseconds when exposed to a magnetic field. If the magnetic field is induced by moving a permanent magnet instead of applying current to a solenoid, it is possible to design a MR damper consuming low power because the power consumption is reduced at steady state. This paper proposes valve mode MR damper using permanent magnetic circuit that has wide range of operation with low power consumption and small size. To design a MR damper that has a large maximum dissipating torque and a low damping coefficient, a design parameter is adopted. The magnetic circuit, material of choke and choke type are selected experimentally with the design parameter. The behaviors of the damper are examined and torque tracking control using PID feedback controller is performed for step, ramp and sinusoidal trajectories.

  • PDF

Ride Comfort Evaluation of Electronic Control Suspension Using a Magneto-rheological Damper (MR 댐퍼를 이용한 전자제어 현가장치의 승차감 평가)

  • Sung, Kum-Gil;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.5
    • /
    • pp.463-471
    • /
    • 2013
  • This paper presents design and control of electronic control suspension(ECS) equipped with controllable magnetorheological(MR) damper for passenger vehicle. In order to achieve this goal, a cylindrical type MR fluid damper that satisfies design specification of a middle-sized commercial passenger vehicle is proposed. After manufacturing the MR damper with design parameters, their field-dependent damping forces are experimentally evaluated and compared with those of a conventional damper. A quarter-vehicle MR ECS system consisting of sprung mass, spring, tire, controller and the MR damper is established in order to investigate the ride comfort performances. On the basis of the governing equation of motion of the suspension system, five control strategies(soft, hard, comfort, sport and optimal mode) are formulated. The proposed control strategies are then experimentally realized with the quarter-vehicle MR ECS system. Control performances such as vertical acceleration of the car body and tire deflection are evaluated in frequency domains on random road condition. In addition, performance comparison of WRMS(weighted root mean square) of the quarter-vehicle MR ECS system on random road are undertaken in order to investigate ride comfort characteristics.

An Experimental Study on the Design Parameters of the Dashpot type MR fluid mount (대시포트형 MR유체 마운트의 설계 인자에 대한 실험적 고찰)

  • Park, Woo-Cheul;Kim, Il-Gyoum;Lee, Hyun-Chang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3567-3573
    • /
    • 2009
  • This research proposed a dashpot type mount design using MR fluids, and investigated experimentally the influence of the design parameters of the dashpot MR fluid mount, which affect the damping forces of the dashpot MR fluid mount. In order to observe the influence, the dashpot MR fluid mount which have the different effective length and the core structure is manufactured. The variations of the resistance forces according to different effective lengths of the magnetic pole of MR fluid mount, along which magnetic field is defined, was investigated. It was founded that the resistance forces from the MR mount decreased with increased input frequencies, while increased with increased applied electric current intensities. Nevertheless, there is no appreciable change in the resistance forces with respect to the effective length variations of the magnetic pole of MR fluid mount.

Quasi-Steady Damping Force of Electro- and magneto-Rheo logical Flow Mode Dampers using Herschel-Bulkley Model (Herschel-Bulkley 모델에 의한 전기 및 자기장 유체 댐퍼의 준안정 상태 댐핑력 해석)

  • Lee, Dug-Young;Hwang, Woo-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1298-1302
    • /
    • 2000
  • Electrorheological(HER) and magnetorheologica(MR) fluids have a unique ability to increase the dynamic yield stress of the fluid substantially when electric or magnetic field is applied. ER and MR fluid-based dampers are typically analyzed using Bingham-plastic shear flow analysis under Quasi-steady fully developed flow conditions. An alternative perspective, supported by measurements reported in the literature, is to allow for post-yield shear thinning and shear thickening. To model these, the constant post-yield plastic viscosity in Bingham model can be replaced with a power-law model dependent on shear strain rate that is known as the Herschel-Bulkley fluid model. The objective of this paper is to predict the damping forces analytically in a typical ER bypass damper for variable electric field, or yield stress using Herschel-Bulkley analysis.

  • PDF

Semi-active damped outriggers for seismic protection of high-rise buildings

  • Chang, Chia-Ming;Wang, Zhihao;Spencer, Billie F. Jr.;Chen, Zhengqing
    • Smart Structures and Systems
    • /
    • v.11 no.5
    • /
    • pp.435-451
    • /
    • 2013
  • High-rise buildings are a common feature of urban cities around the world. These flexible structures frequently exhibit large vibration due to strong winds and earthquakes. Structural control has been employed as an effective means to mitigate excessive responses; however, structural control mechanisms that can be used in tall buildings are limited primarily to mass and liquid dampers. An attractive alternative can be found in outrigger damping systems, where the bending deformation of the building is transformed into shear deformation across dampers placed between the outrigger and the perimeter columns. The outrigger system provides additional damping that can reduce structural responses, such as the floor displacements and accelerations. This paper investigates the potential of using smart dampers, specifically magnetorheological (MR) fluid dampers, in the outrigger system. First, a high-rise building is modeled to portray the St. Francis Shangri-La Place in Philippines. The optimal performance of the outrigger damping system for mitigation of seismic responses in terms of damper size and location also is subsequently evaluated. The efficacy of the semi-active damped outrigger system is finally verified through numerical simulation.