• Title/Summary/Keyword: MR Image

Search Result 652, Processing Time 0.024 seconds

Analysis of Skin Movement Artifacts Using MR Images (자기공명 영상을 이용한 피부 움직임 에러 분석에 관한 연구)

  • ;N. Miyata;M. Kouchi;M. Mochimaru
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.164-170
    • /
    • 2004
  • The skin movement artifacts are referred to as the relative motion of skin with respect to the motion of underlying bones. This is of great importance in joint biomechanics or internal kinematics of human body. This paper describes a novel experiment that measures the skin movement of a hand based on MR(magnetic resonance) images in conjunction with surface modeling techniques. The proposed approach consists of 3 phases: (1) MR scanning of a hand with surface makers, (2) 3D reconstruction from the MR images, and (3) registration of the 3D models. The MR images of the hand are captured by 3 different postures. And the surface makers which are attached to the skin are employed to trace the skin motion. After reconstruction of 3D models from the scanned MR images, the global registration is applied to the 3D models based on the particular bone shape of different postures. The results of registration are then used to trace the skin movement by measuring the positions of the surface markers.

A study of usefulness for the plan based on only MRI using ViewRay MRIdian system (ViewRay MRIdian System을 이용한 MRI only based plan의 유용성 고찰)

  • Jeon, Chang Woo;Lee, Ho Jin;An, Beom Seok;Kim, Chan young;Lee, Je hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.2
    • /
    • pp.131-143
    • /
    • 2015
  • Purpose : By comparing a CT fusion plan based on MRI with a plan based on only MRI without CT, we intended to study usefulness of a plan based on only MRI. And furthermore, we intended to realize a realtime MR-IGRT by MRI image without CT scan during the course of simulation, treatment planning, and radiation treatment. Materials and Methods : BBB CT (Brilliance Big Bore CT, 16slice, Philips), Viewray MRIdian system (Viewray, USA) were used for CT & MR simulation and Treatment plan of 11 patients (1 Head and Neck, 5 Breast, 1 Lung, 3 Liver, 1 Prostate). When scanning for treatment, Free Breathing was enacted for Head&Neck, Breast, Prostate and Inhalation Breathing Holding for Lung and Liver. Considering the difference of size between CT and Viewray, the patient's position and devices were in the same condition. Using Viewray MRIdian system, two treatment plans were established. The one was CT fusion treatment plan based on MR image. Another was MR treatment plan including electron density that [ICRU 46] recommend for Lung, Air and Bone. For Head&Neck, Breast and Prostate, IMRT was established and for Lung and Liver, Gating treatment plan was established. PTV's Homogeneity Index(HI) and Conformity Index(CI) were use to estimate the treatment plan. And DVH and dose difference of each PTV and OAR were compared to estimate the treatment plan. Results : Between the two treatment plan, each difference of PTV's HI value is 0.089% (Head&Neck), 0.26% (Breast), 0.67% (Lung), 0.2% (Liver), 0.4% (Prostate) and in case of CI, 0.043% (Head&Neck), 0.84% (Breast), 0.68% (Lung), 0.46% (Liver), 0.3% (Prostate). As showed above, it is on Head&Neck that HI and CI's difference value is smallest. Each difference of average dose on PTV is 0.07 Gy (Head&Neck), 0.29 Gy (Breast), 0.18 Gy (Lung), 0.3 Gy (Liver), 0.18 Gy (Prostate). And by percentage, it is 0.06% (Head&Neck), 0.7% (Breast), 0.29% (Lung), 0.69% (Liver), 0.44% (Prostate). Likewise, All is under 1%. In Head&Neck, average dose difference of each OAR is 0.01~0.12 Gy, 0.04~0.06 Gy in Breast, 0.01~0.21 Gy in Lung, 0.06~0.27 Gy in Liver and 0.02~0.23 Gy in Prostate. Conclusion : PTV's HI, CI dose difference on the Treatment plan using MR image is under 1% and OAR's dose difference is maximum 0.89 Gy as heterogeneous tissue increases when comparing with that fused CT image. Besides, It characterizes excellent contrast in soft tissue. So, radiation therapy using only MR image without CT scan is useful in the part like Head&Neck, partial breast and prostate cancer which has a little difference of heterogeneity.

  • PDF

Effect of Gd-DTPA on Diffusion in Canine Brain with Hyperacute Stroke (초급성 뇌경색을 일으킨 개에서 Gd-조영제의 주입이 뇌의 확산에 미치는 영향)

  • 김범수;정소령;신경섭
    • Investigative Magnetic Resonance Imaging
    • /
    • v.6 no.2
    • /
    • pp.158-165
    • /
    • 2002
  • Purpose : To evaluate the effect of Gd-DTPA on signal intensity of diffusion-weighted magnetic resonance(MR) image and apparent diffuse coefficient (ADC) in dog brain with hype racute stroke. Materials and methods : Experimental canine model of hyperacute cerebral infarction was made by selective intraarterial embolization with particulate embolic material. Diffusion-weighted MR imaging was performed in five dogs at 1 hour after the embolization of internal carotid artery. After intravenous bolus injection of Gd- DTPA, additional 11 diffusion-weighted MR images were serially obtained from 2 minutes to 90 minutes after injection in each dog. The author evaluated findings of hyperacute cerebral infarction on diffusion-weighted MR imaging, and calculated mean signal intensity and mean ADC in infarcted region and contralateral normal region. Statistical analysis of mean signal intensity, mean ADC and contrast-noise ratio before and after Gd-DTPA injection was performed. Results : Hyperacute cerebral infarction developed in all five dogs on diffusion-weighted MR images obtained 1 hour after embolization. The area of hyperacute infarction had steady increase in signal intensity on diffusion-weighted MR image and decrease in ADC. In normal perfusion area, decrease in signal intensity was observed at 2 minutes the Gd-DTPA injection, whereas ADC did not changed. Conclusion : Intravenous injection of Gd-DTPA had no influence on ADC in both hyperacute infarction and normally perfused are a, but caused initial transient signal reduction in normally perfused area on diffusion-weighted MR image due to susceptibility effect of Gd-DTPA. It is important to calculate ADC in evaluating the effect of diffusion after injection of Gd-DTPA.

  • PDF

The Brain Region Extraction Using Cellular Automata (셀룰러 오토마타를 이용한 뇌 영역 추출에 관한 연구)

  • 이승용;허창우;류광렬
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.247-250
    • /
    • 2003
  • This paper describes the extraction method for brain region using cellular automata from the brain MR image. In the first removing the background from the brain MR image, and then extracting the brain region by applying the cellular automata rule obtained from histogram analysis information. The results on some experimental results showed that the PSNR is 42.11(dB) on image quality and also the correlation factor is estimated 98.46%. The result of this study can be used as the auto-diagnostics system.

  • PDF

Low Magnetic Field MRI Visibility of Rubber-Based Markers

  • Kim, Jeong Ho;Jung, Seongmoon;Kim, Jung-in
    • Progress in Medical Physics
    • /
    • v.30 no.4
    • /
    • pp.89-93
    • /
    • 2019
  • Purpose: This study aims to develop new markers based on silicone rubber and urethane rubber to enhance visibility in low magnetic field magnetic resonance (MR) imaging. Methods: Four types of markers were fabricated using two different base materials. Two of the markers were composed of two different types of silicone rubber: DragonSkin™ 10 MEDIUM and BodyDouble™ SILK. The other two markers were composed of types of urethane rubber: PMC™ 780 DRY and VytaFlex™ 20. Silicone oil (KF-96 1000cs) was added to the fabricated markers. The allocated amount of oil was 20% of the weight (wt%) of each respective marker. The MR images of the markers, with and without the silicone oil, were acquired using MRIdian with a low magnetic field of 0.35 T. The signal intensities of each MR image for the markers were analyzed using ImageJ software and the visibility for each was compared. Results: The highest signal intensity was observed in VytaFlex™ 20 (279.67±3.57). Large differences in the signal intensities (e.g., 627% in relative difference between BodyDouble™ SILK and VytaFlex™ 20) among the markers were observed. However, the maximum difference between the signal intensities of the markers with the silicone oil showed only a 62% relative difference between PMC™ 780 DRY and DragonSkin™ 10 MEDIUM. An increase in the signal intensity of the markers with the silicone oil was observed in all markers. Conclusions: New markers were successfully fabricated. Among the markers, DragonSkin™ 10 MEDIUM with silicone oil showed the highest MR signal intensity.

Associated Brain Parenchymal Abnormalities in Developmental Venous Anomalies: Evaluation with Susceptibility-weighted MR Imaging

  • Ryu, Hyeon Gyu;Choi, Dae Seob;Cho, Soo Bueum;Shin, Hwa Seon;Choi, Ho Cheol;Jeong, Boseul;Seo, Hyemin;Cho, Jae Min
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.3
    • /
    • pp.146-152
    • /
    • 2015
  • Purpose: The purpose of this study was to evaluate the associated brain parenchymal abnormalities of developmental venous anomalies (DVA) with susceptibility-weighted image (SWI). Materials and Methods: Between January 2012 and June 2013, 2356 patients underwent brain MR examinations with contrast enhancement. We retrospectively reviewed their MR examinations and data were collected as per the following criteria: incidence, locations, and associated parenchymal signal abnormalities of DVAs on T2-weighted image, fluid-attenuated inversion recovery (FLAIR), and SWI. Contrast enhanced T1-weighted image was used to diagnose DVA. Results: Of the 2356 patients examined, 57 DVAs were detected in 57 patients (2.4%); 47 (82.4%) were in either lobe of the supratentorial brain, 9 (15.7%) were in the cerebellum, and 1 (1.7%) was in the pons. Of the 57 DVAs identified, 20 (35.1%) had associated parenchymal abnormalities in the drainage area. Among the 20 DVAs which had associated parenchymal abnormalities, 13 showed hemorrhagic foci on SWI, and 7 demonstrated only increased parenchymal signal abnormalities on T2-weighted and FLAIR images. In 5 of the 13 patients (38.5%) who had hemorrhagic foci, the hemorrhagic lesions were demonstrated only on SWI. Conclusion: The overall incidence of DVAs was 2.4%. Parenchymal abnormalities were associated with DVAs in 35.1% of the cases. On SWI, hemorrhage was detected in 22.8% of DVAs. Thus, we conclude that SWI might give a potential for understanding of the pathophysiology of parenchymal abnormalities in DVAs.

Automatic Segmentation of the Prostate in MR Images using Image Intensity and Gradient Information (영상의 밝기값과 기울기 정보를 이용한 MR영상에서 전립선 자동분할)

  • Jang, Yj-Jin;Jo, Hyun-Hee;Hong, Helen
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.9
    • /
    • pp.695-699
    • /
    • 2009
  • In this paper, we propose an automatic prostate segmentation technique using image intensity and gradient information. Our method is composed of four steps. First, rays at regular intervals are generated. To minimize the effect of noise, the start and end positions of the ray are calculated. Second, the profiles on each ray are sorted based on the gradient. And priorities are applied to the sorted gradient in the profile. Third, boundary points are extracted by using gradient priority and intensity distribution. Finally, to reduce the error, the extracted boundary points are corrected by using B-spline interpolation. For accuracy evaluation, the average distance differences and overlapping region ratio between results of manual and automatic segmentations are calculated. As the experimental results, the average distance difference error and standard deviation were 1.09mm $\pm0.20mm$. And the overlapping region ratio was 92%.

Quantitative Analysis of MR Image in Cerebral Infarction Period (뇌경색 시기별 MR영상의 정량적 분석)

  • Park, Byeong-Rae;Ha, Kwang;Kim, Hak-Jin;Lee, Seok-Hong;Jeon, Gye-Rok
    • Journal of radiological science and technology
    • /
    • v.23 no.1
    • /
    • pp.39-47
    • /
    • 2000
  • In this study, we showed a comparison and analysis making use of DWI(diffusion weighted image) using early diagnosis of cerebral Infarction and with the classified T2 weighted image, FLAIR images signal intensity for brain infarction period. period of cerebral infarction after the condition of a disease by ischemic stroke. To compare 3 types of image, we performed polynomial warping and affined transform for image matching. Using proposed algorithm, calculated signal intensity difference between T2WI, DWI, FLAIR and DWI. The quantification values between hand made and calculated data are almost the same. We quantified the each period and performed pseudo color mapping by comparing signal intensity each other according to previously obtained hand made data, and compared the result of this paper according to obtained quantified data to that of doctors decision. The examined mean and standard deviation for each brain infarction stage are as follows ; the means and standard deviations of signal intensity difference between DWI and T2WI for each period are $197.7{\pm}6.9$ in hyperacute, $110.2{\pm}5.4$ in acute, and $67.8{\pm}7.2$ in subacute. And the means and standard deviations of signal intensity difference between DWI and FLAIR for each period are $199.8{\pm}7.5$ in hyperacute, $115.3{\pm}8.0$ in acute, and $70.9{\pm}5.8$ in subacute. We can quantificate and decide cerebral infarction period objectively. According to this study, DWI is very exact for early diagnosis. We classified the period of infarction occurrence to analyze the region of disease and normal region in DW, T2WI, FLAIR images.

  • PDF

The usability of the MR Breast perfusion image and Time-Signal Intensity curve in Breast cancer patients (유방암 환자에서 MR Breast perfusion 영상과 시간-신호강도 곡선의 유용성)

  • Cho, Jae-Hwan;Lee, Hae-Kag
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4068-4074
    • /
    • 2011
  • The purpose of this study was to examine the usefulness of MR Breast perfusion image and time-signal intensity curve in patients diagnosed with breast cancer. We selected on 20 patients who were histologically diagnosed to have invasive ductal carcinoma (IDC) from March 2009 to December 2010. First, the Breast perfusion mapping image was reconstructed after obtaining the dynamic contrast enhancement image. The reconstructed image measured the slope, maximal relative enhancement, and time to peak on the detail including the lesion region, normal region, back ground region after obtaining the time-signal intensity curve. The lesion region and normal and slope of the back ground part were measured with the quantitive analytical method about the research and the average was compared and was analyze. In the qualitative analysis, the signal strength of each pixel was analyze with the macroscopic and being high it was low, the medium (2) performed the division of (a) by the three-point standard and the average was measured. The findings from the quantitative image analysis are the following: In the lesion region, the slope and maximal relative enhancement were the highestest among and the time to peak was the highestest in the back ground region. In the qualitative analysis, the breast perfusion image showed a diagnostic efficiency.

Improved Perfusion Contrast and Reliability in MR Perfusion Images Using A Novel Arterial Spin Labeling

  • Jahng, Geon-Ho;Xioaping Zhu;Gerald Matson;Weiner, Michael-W;Norbert Schuff
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.341-344
    • /
    • 2002
  • Neurodegenerative disorders, like Alzheimer's disease, are often accompanied by reduced brain perfusion (cerebral blood flow). Using the intrinsic magnetic properties of water, arterial spin labeling magnetic resonance imaging (ASLMRI) can map brain perfusion without injection of radioactive tracers or contrast agents. However, accuracy in measuring perfusion with ASL-MRI can be limited because of contributions to the signal from stationary spins and because of signal modulations due to transient magnetic field effects. The goal was to optimize ASL-MRI for perfusion measurements in the aging human brain, including brains with Alzheimer's disease. A new ASL-MRI sequence was designed and evaluated on phantom and humans. Image texture analysis was performed to test quantitatively improvements. Compared to other ASL-MRI methods, the newly designed sequence provided improved signal to noise ratio improved signal uniformity across slices, and thus, increased measurement reliability. This new ASL-MRI sequence should therefore provide improved measurements of regional changes of brain perfusion in normal aging and neurodegenerative disorders.

  • PDF