• Title/Summary/Keyword: MPV type reduction

Search Result 18, Processing Time 0.021 seconds

MPV-Reduction of C=O bond with Al-substituted-dialkylalan; A Theoretical Study on Relative Reactivity of Various Carbonyl Substrates

  • Nahm, Keepyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.546-550
    • /
    • 2014
  • Relative reactivity of various carbonyl and acid derivatives in MPV-type (Meerwein-Ponndorf-Verley) reduction with an DIBAL(F) model has been studied via DFT and MP2 methods. Free energies of initial adduct formation (-Gadd) of DIBAL(F) model and carbonyls are in the order of amide < ester < aldehyde < ketone < acid chloride; in the alan-amide adduct, the developed positive charge at carbonyl carbon is expected to be stabilized by amide resonance, but in the acid chloride adduct it is destabilized by inductive effect of chloride. However the TS barrier energies (${\Delta}G_{TS}$) for the MPV-type hydride reduction of the carbonyl adducts are in the order of aldehyde < ketone < acid chloride << ester < amide; presumably decreasing order of electrophilicity of carbonyl carbon at adducts, which is well correlated with experimental data. It is noted that the relative reactivity of carbonyl derivatives in MPV-type reduction with DIBAL(X) is not governed by the alan-adduct formation energies, but follows the order of electrophilicity of carbonyl carbon of transition states.

Selective Reduction of Carbonyl and Epoxy Compounds Using Aluminum, Boron and Other Metal Reagents. Comparison of Reducing Characteristics between the Meerwein-Ponndorf-Verley Type Reduction and Metal Complex Hydrides Reduction: A Review

  • Cha, Jin-Soon
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2162-2190
    • /
    • 2007
  • The newly-developed Meerwein-Ponndorf-Verley (MVP) type reagents using aluminum, boron and other metals for reduction of organic functional groups such as carbonyl and epoxy compounds have been surveyed. highlighted and reviewed in this account are the appearance of new MPV type reagents and their application to the selective reduction of organic functions. Finally, this account emphasizes the distinct contrast in the reducing characteristics existed between metal hydride reagents and MPV reagents, and compares their usefulness in organic synthesis.

Relative Reactivity of Various Al-substituted-dialkylalans in Reduction of Carbonyl Compounds: A Theoretical Study on Substituent Effect

  • Nahm, Keepyung;Cha, Jin Soon
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2335-2339
    • /
    • 2013
  • Relative reactivity of various Al-substituted dialkylalans ($AlR_2(X)$) in reduction of acetone has been studied with density functional theory and MP2 method. Formation of the alan dimers and the alan-acetone adduct, and the transition state for the Meerwein-Ponndorf-Verley (MPV) type reduction of the adduct were calculated to figure out the energy profile. Formation of dimeric alans is highly exothermic. Both the relative free energies for acetone-alan adduct formation and the TS barriers for the MPV type reduction with respect to alan dimers and acetone were calculated and they show the same trend. Based on these energetic data, relative reactivity of alans is expected to be; $AlR_2(Cl)$ > $AlR_2(OTf)$ > $AlR_2(O_2CCF_3)$ > $AlR_2(F)$ > $AlR_2(OMs)$ > $AlR_2(OAc)$ > $AlR_2(OMe)$ > $AlR_2(NMe_2)$. The energy profile is relatively well correlated with the experimental order of the reactivity of Al-substituted dialkylalans. It is noted that the substituents of alans have initial effects on the relative free energies for the carbonyl-adduct formation. Therefore, an $AlR_2(X)$ which forms a more stable carbonyl-adduct is more reactive in carbonyl reduction.

Selective Reduction of Organic Compounds with Al-Trifluoromethanesulfonyldiisobutylalane. Comparison of Its Reactivity with Al-Methanesulfonyldiisobutylalane

  • Cha, Jin-Soon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.219-224
    • /
    • 2011
  • The new MPV type reagent, Al-trifluoromethanesulfonyldiisobutylalane ($DIBAO_3SCF_3$), has been prepared and its reducing characteristics in the reduction of selected organic compounds containing representative functional groups have been examined, and compared its reactivity with that of Al-methanesulfonyldiisobutylalane ($DIBAO_3SCH_3$) in order to understand the fluorine-substituent effect on its reactivity. In general, the reactivity of $DIBAO_3SCF_3$ appears to be much higher than that of $DIBAO_3SCH_3$, apparently due to the acidity increase by the electron-withdrawing fluorine-substituent. The reagent reduced aldehydes and ketones readily, but showed a perfect selectivity in the reduction of $\alpha,\beta$-unsaturated aldehydes and ketones to produce the corresponding allylic alcohols in an absolutely 100% purity. In addition, the reagent achieved the regioselective cleavage of phenyl- or/and alkyl-substituted epoxides to the less substituted alcohols in a perfect regioselectivity. Moreover, the reagent also showed an high stereoselectivity in the reduction of substituted cycloalkanones to produce the thermodynamically more stable alcohol epimers exclusively.

Selective Reduction of Organic Compounds with Al-Methanesulfonyldiisobutylalane

  • Cha, Jin-Soon;Noh, Min-Yeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.840-844
    • /
    • 2010
  • The new MPV type reagent, Al-methanesulfonyldiisobutylalane ($DIBAO_3SCH_3$), has been prepared and its reducing characteristics in the reduction of selected organic compounds containing representative functional groups have been examined in order to find out a new reducing system with high selectivity in organic synthesis. In general, the reagent is extremely mild, showing only reactivity toward aldehydes, ketones and epoxides. The reagent exhibits a unique reducing applicability in organic synthesis. Thus, the reagent can achieve a clean 1,2-reduction of $\alpha,\beta$-unsaturated aldehydes and ketones to produce the corresponding allylic alcohols in 100% purity. In addition, the reagent shows an excellent regioselectivity in the ring-opening reaction of epoxides. Finally, $DIBAO_3SCH_3$ shows a high stereoselectivity in the reduction of cyclic ketones to produce the thermodynamically more stable epimers exclusively.

Thirty Six Years of Research on the Selective Reduction and Hydroboration

  • Cha, Jin-Soon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1808-1846
    • /
    • 2011
  • From 1975 to 2011, for thirty six years, the author and his collaborators have developed a variety of reducing and hydroborating agents, and applied them to organic synthesis, which involves the 1,2-reduction of ${\alpha}$,${\beta}$-unsaturated carbonyl compounds, stereoselective reduction of cycloalkanones, regioselective ring-opening of epoxides, partial reduction of carboxylic acid derivatives to aldehydes, regioselective addition to carbon-carbon multiple bonds, etc. by utilizing metal hydrides and the newly-devised the Meerwein-Ponndorf-Verley (MPV) type reagents. Such developments provide a new synthetic methodology making possible valuable selective reductions and hydroborations, not practical previously.

Selective Reduction of Carbonyl Compounds with B-Acetoxy- and B-Trifluoroacetoxydiisopinocampheylboranes

  • Cha, Jin-Soon;Nam, Ho-Tae;Park, Seung-Jin;Kwon, Sang-Yong;Kwon, Oh Oun
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.667-671
    • /
    • 2006
  • The new MPV-type reagents, B-acetoxydiisopinocampheylborane ($Ipc _2$BOAc) and B-trifluoroacetoxydiisopinocampheylborane $(Ipc _2BO _2CCF _3)$, have been prepared and their reducing characteristics in the reduction of carbonyl compound have been examined in order to find out a new reducing system with unique applicability in organic synthesis. In general, the reactivity of $Ipc _2BO _2CCF _3$ appears to be stronger than that of $Ipc _2$BOAc, presumably due to the acidity increase by the electron-withdrawing fluorine-substituent. Both reagents show an excellent selectivity in 1,2-reduction of $\alpha,\beta$-unsaturatedcarbonyl compounds and in competitive reduction between structurally different carbonyl compounds. In addition, $Ipc _2BO _2CCF _3$ shows interesting features in the stereoreduction of cyclic ketones.