DOI QR코드

DOI QR Code

Selective Reduction of Carbonyl and Epoxy Compounds Using Aluminum, Boron and Other Metal Reagents. Comparison of Reducing Characteristics between the Meerwein-Ponndorf-Verley Type Reduction and Metal Complex Hydrides Reduction: A Review

  • Published : 2007.12.20

Abstract

The newly-developed Meerwein-Ponndorf-Verley (MVP) type reagents using aluminum, boron and other metals for reduction of organic functional groups such as carbonyl and epoxy compounds have been surveyed. highlighted and reviewed in this account are the appearance of new MPV type reagents and their application to the selective reduction of organic functions. Finally, this account emphasizes the distinct contrast in the reducing characteristics existed between metal hydride reagents and MPV reagents, and compares their usefulness in organic synthesis.

Keywords

References

  1. Schlesinger, H. I.; Brown, H. C.; Hoekstra, H. R.; Rapp, L. R. J. Am. Chem. Soc. 1953, 75, 199 https://doi.org/10.1021/ja01097a053
  2. Finholt, A. E.; Bond, A. C., Jr.; Schlesinger, H. I. J. Am. Chem. Soc. 1947, 69, 1199 https://doi.org/10.1021/ja01197a061
  3. Gaylord, N. G. Reduction with Complex Metal Hydrides; Interscience: New York, 1956
  4. Schenker, E. Newer Methods of Preparative Organic Chemistry; Verlag Chemie GmbH: Weinheim/Bergstr, 1968; Vol. IV, pp 196-335
  5. Brown, H. C. Organic Synthesis via Boranes; Wiley-Interscience: New York, 1975
  6. Cragg, G. M. L. Organoboranes in Organic Synthesis; Marcel Dekker: New York, 1973
  7. House, H. O. Modern Synthetic Reactions; Benjamin: Menlo Park, California, 1972
  8. Walker, E. R. H. Chem. Soc. Rev. 1976, 5, 23 https://doi.org/10.1039/cs9760500023
  9. Lane, C. F. Chem. Rev. 1976, 76, 773 https://doi.org/10.1021/cr60304a005
  10. Hajos, A. Complex Hydrides and Related Reducing Agents in Organic Synthesis; Elsevier Biomedical: Amsterdam, 1979
  11. Brown, H. C.; Krishnamurthy, S. Tetrahedron 1979, 35, 567 https://doi.org/10.1016/0040-4020(79)87003-9
  12. Hudlicky, M. Reductions in Organic Synthesis; Chichester, V. K., Ed.; Ellis Horwood: 1984
  13. Pelter, A.; Smith, K.; Brown, H. C. Borane Reagents; Academic Press: London, 1988
  14. Knauer, B.; Krohn, K. Liebigs Ann. 1995, 677
  15. Brown, W. G. Org. React. 1951, 6, 469
  16. Verley, A. Bull. Soc. Chim. Fr. 1925, 37, 537, 871
  17. Verley, A. Bull. Soc.Chim. Fr. 1927, 41, 788
  18. Meerwein, H.; Schmidt, R. Liebigs Ann. 1925, 444, 221 https://doi.org/10.1002/jlac.19254440112
  19. Ponndorf, W. Z. Angew. Chem. 1926, 39, 138 https://doi.org/10.1002/ange.19260390504
  20. Lund, H. Dtsch. Chem. Ges. 1937, 70, 1520 https://doi.org/10.1002/cber.19370700713
  21. Wilds, A. L. Org. React. 1944, 2, 178
  22. Johnstone, R. A. W.; Wilby, A. H. Chem. Rev. 1985, 85, 129 https://doi.org/10.1021/cr00066a003
  23. de Graauw, C. F.; Peters, J. A.; van Bekkum, H.; Huskens, J. Synthesis 1994, 10, 1007
  24. Meerwein, H.; Hinz, G.; Majert, H.; Sonke, H. J. Prakt. Chem. 1936, 147, 226 https://doi.org/10.1002/prac.19361470608
  25. Ziegler, K.; Schneider, K. Justus Liebigs Ann. Chem. 1959, 623, 9 https://doi.org/10.1002/jlac.19596230103
  26. Ziegler, K.; Schneider, K.; Schneider, J. Angew. Chem. 1955, 67, 425
  27. Haeck, H. H.; Kralt, T. Rec. Trav. Chim. Pays- Bas 1966, 85, 343
  28. Mikhailov, B. M.; Kiselev, V. G.; Bubnov, Y. N. Izv. AN SSSR, Ser. Khim. 1965, 898
  29. Mikhailov, B. M.; Bubnov, Y. N.; Kiselev, V. G. Zh. Obsh. Khim. 1965, 36, 62
  30. Mikhailov, B. M.; Bubnov, Y. N.; Kiselev, V. G. J. Gen. Chem. USSR 1966, 36, 65
  31. Midland, M. M.; Tramontano, A.; Zderic, S. A. J. Organometal. Chem. 1977, 134, C17 https://doi.org/10.1016/S0022-328X(00)93625-8
  32. Midland, M. M.; Tramontano, A.; Zderic, S. A. 1978, 156, 203
  33. Midland, M. M.; Tramontano, A. J. Org. Chem. 1978, 43, 1470 https://doi.org/10.1021/jo00401a043
  34. Chandrasekharan, J.; Ramachandran, P. V.; Brown, H. C. J. Org. Chem. 1985, 50, 5446 https://doi.org/10.1021/jo00225a109
  35. Brown, H. C.; Ramachandran, P. V.; Chandrasekharan, Heteroatom Chem. 1995, 6, 117 https://doi.org/10.1002/hc.520060206
  36. Doering, W. von E.; Cortez, G.; Knox, L. H. J. Am. Chem. Soc. 1947, 69, 1700 https://doi.org/10.1021/ja01199a039
  37. Doering, W. von E.; Aschner, T. C. J. Am. Chem. Soc. 1949, 71, 838 https://doi.org/10.1021/ja01171a021
  38. Doering, W. von E.; Aschner, T. C. J. Am. Chem. Soc. 1953, 75, 393 https://doi.org/10.1021/ja01098a040
  39. Williams, E. D.; Krieger, K. A.; Day, A. R. J. Am. Chem. Soc. 1953, 75, 2404 https://doi.org/10.1021/ja01106a037
  40. Woodward, R. B.; Wendler, N. L.; Brutschy, F. J. J. Am. Chem. Soc. 1945, 67, 1425 https://doi.org/10.1021/ja01225a001
  41. Jackman, L. M.; Macbeth, A. K.; Mills, J. A. J. Am. Chem. Soc. 1949, 2641
  42. Jackman, L. M.; Mills, J. A.; Shannon, J. S. J. Am. Chem. Soc. 1950, 72, 4814 https://doi.org/10.1021/ja01166a511
  43. Doering, W. von E.; Young, R. W. J. Am. Chem. Soc. 1950, 72, 631
  44. Lutz, R. E.; Gillespie, J. S., Jr. J. Am. Chem. Soc. 1950, 72, 344 https://doi.org/10.1021/ja01157a091
  45. McGowna, J. C. Chem. Ind. (London) 1951, 601
  46. Williams, E. D.; Krieger, K. A.; Day, A. R. J. Am. Chem. Soc. 1953, 75, 2404 https://doi.org/10.1021/ja01106a037
  47. Moulton, W. N.; Van Atta, R. E.; Ruch, R. R. J. Org. Chem. 1961, 26, 290 https://doi.org/10.1021/jo01061a002
  48. Shiner, V. J., Jr.; Whittaker, D. J. Am. Chem. Soc. 1963, 85, 2337 https://doi.org/10.1021/ja00898a043
  49. Shiner, V. J., Jr.; Whittaker, D. J. Am. Chem. Soc. 1969, 91, 394 https://doi.org/10.1021/ja01030a031
  50. Warnhoff, E. W.; Reynolds-Warnhoff, P.; Wong, M. Y. H. J. Am. Chem. Soc. 1980, 102, 5956
  51. Strickler, J. R.; Bruck, M. A.; Wexler, P. A.; Wigley, D. E. Organometallics 1990, 9, 266 https://doi.org/10.1021/om00115a039
  52. Ko, B.-T.; Wu, C.-C.; Lin, C.-C. Organometallics 2000, 19, 1864
  53. Liu, Y.-C.; Ko, B.-T.; Huang, B.-H.; Lin, C.-C. Organometallics 2002, 21, 2066
  54. Cohen, R.; Graves, C. R.; Nguyen, S. T.; Martin, J. M. L.; Ratner, M. A. J. Am. Chem. Soc. 2004, 126, 14796 https://doi.org/10.1021/ja047613m
  55. Ashby, E. C.; Yu, S. H. J. Org. Chem. 1970, 35, 1034 https://doi.org/10.1021/jo00829a038
  56. Giacomelli, G. P.; Menicagli, R.; Lardicci, L. Tetrahedron Lett. 1971, 4135
  57. Midland, M. M.; Zderic, S. J. Am. Chem. Soc. 1982, 104, 525 https://doi.org/10.1021/ja00366a025
  58. Akamanchi, K. G.; Varalakshmy, N. R. Tetrahedron Lett. 1995, 36, 3571 https://doi.org/10.1016/0040-4039(95)00561-P
  59. Akamanchi, K. G.; Varalakshmy, N. R. Tetrahedron Lett. 1995, 36, 5085 https://doi.org/10.1016/0040-4039(95)00946-A
  60. Akamanchi, K. G.; Varalakshmy, N. R.; Chaudhari, B. A. Synlett 1997, 371
  61. Ko, B.-T.; Wu, C.-C.; Lin, C.-C. Organometallics 2000, 19, 1864
  62. Ooi, T.; Ichikawa, H.; Maruoka, K. Angew. Chem. Int. Ed. 2001, 40, 3610 https://doi.org/10.1002/1521-3773(20011001)40:19<3610::AID-ANIE3610>3.0.CO;2-L
  63. Ooi. T.; Miura, T.; Itagaki, Y.; Ichikawa, H.; Maruoka, K. Synthesis 2002, 279
  64. Konishi, K.; Makita, K.; Aida, T.; Inoue, S. J. Chem. Soc. Chem. Commun. 1988, 643
  65. Cha, J. S.; Kwon, O. O.; Kwon, S. Y.; Kim, J. M.; Seo, W. W.; Chang, S. W. Synlett 1995, 1055
  66. Cha, J. S.; Kwon, O. O.; Kwon, S. Y. Bull. Korean Chem. Soc. 1995, 16, 1009
  67. Cha, J. S.; Kwon, O. O.; Kwon, S. Y. Org. Prep. Proced. Int. 1996, 28, 355 https://doi.org/10.1080/00304949609356544
  68. Cha, J. S.; Kwon, O. O. J. Org. Chem. 1997, 62, 3019 https://doi.org/10.1021/jo970083a
  69. Cha, J. S.; Kwon, O. O. Bull. Korean Chem. Soc. 1997, 18, 689
  70. Cha, J. S.; Kwon, O. O.; Kim, J. M.; Chun, J. H.; Lee, Y. S.; Lee, H. S.; Cho, S. D. Bull. Korean Chem. Soc. 1998, 19, 236
  71. Cha, J. S.; Kwon, S. Y.; Kwon, O. O.; Kim, J. M.; Song, H. C. Bull. Korean Chem. Soc. 1996, 17, 900
  72. Kwon, O. O.; Cha, J. S. Bull. Korean Chem. Soc. 2000, 21, 659
  73. Doering, W. von E.; Young, R. W. J. Am. Chem. Soc. 1950, 72, 631
  74. Jackman, L. M.; Mills, J. A.; Shannon, J. S. J. Am. Chem. Soc. 1950, 72, 4814 https://doi.org/10.1021/ja01166a511
  75. Newman, P.; Rutkin, P.; Mislow, K. J. Am. Chem. Soc. 1958, 80, 465 https://doi.org/10.1021/ja01535a054
  76. Nasipuri, D.; Sarker, G. J. Indian Chem. Soc. 1967, 44, 165
  77. Nasipuri, D.; Sarker, G.; Ghosh, C. K. Tetrahedron Lett. 1967, 5189
  78. Fles, D.; Majhofer, B.; Kovac, M. Tetrahedron 1968, 24, 3053 https://doi.org/10.1016/S0040-4020(01)98713-7
  79. Nishide, K.; Shigeta, Y.; Obata, K.; Node, M. J. Am. Chem. Soc. 1996, 118, 13103 https://doi.org/10.1021/ja963098j
  80. Node, M.; Nishide, K.; Shigeta, Y.; Shiraki, H.; Obata, K. J. Am. Chem. Soc. 2000, 122, 1927 https://doi.org/10.1021/ja993546y
  81. Shiraki, H.; Nishide, K.; Node, M. Tetrahedron Lett. 2000, 41, 3437 https://doi.org/10.1016/S0040-4039(00)00395-6
  82. Ozeki, M.; Nishide, K.; Teraoka, F.; Node, M. Tetrahedron: Asymmetry 2004, 15, 895 https://doi.org/10.1016/j.tetasy.2004.01.020
  83. Giacomelli, G.; Lardicci, L.; Palla, F. J. Org. Chem. 1984, 49, 310 https://doi.org/10.1021/jo00176a018
  84. Brown, H. C.; Kramer, G. W.; Levy, A. B.; Midland, M. M. Organic Synthesis via Boranes; Wiley-Interscience: New York, 1975
  85. Midland, M. M.; Tramontano, A.; Zderic, A. J. Am. Chem. Soc. 1977, 99, 5211 https://doi.org/10.1021/ja00457a068
  86. Midland, M. M.; Greer, S.; Tramontano, A.; Zderic, A. J. Am. Chem. Soc. 1979, 101, 2352 https://doi.org/10.1021/ja00503a019
  87. Midland, M. M.; McDowell, D. C.; Hatch, R. L.; Tramontano, A. J. Am. Chem. Soc. 1980, 102, 867 https://doi.org/10.1021/ja00522a083
  88. Midland, M. M.; Lee, P. E. J. Org. Chem. 1981, 46, 3933 https://doi.org/10.1021/jo00332a043
  89. Midland, M. M.; Kazubski, A. J. Org. Chem. 1982, 47, 2495 https://doi.org/10.1021/jo00133a057
  90. Midland, M. M.; Kazubski, A. J. Org. Chem. 1982, 47, 2814 https://doi.org/10.1021/jo00135a036
  91. Midland, M. M.; Tramontano, A.; Kazubski, A.; Graham, R. S.; Tsai, D. J. S.; Cardin, D. B. Tetrahedron 1984, 40, 1371 https://doi.org/10.1016/S0040-4020(01)82422-4
  92. Midland, M. M.; McLoughlin, J. I. J. Org. Chem. 1984, 49, 1317 https://doi.org/10.1021/jo00181a049
  93. Midland, M. M.; McLoughlin, J. I. J. Org. Chem. 1984, 49, 4101 https://doi.org/10.1021/jo00195a059
  94. Midland, M. M.; Tramontano, A. Tetrahedron Lett. 1980, 3549
  95. Brown, H. C.; Pai, G. G. J. Org. Chem. 1985, 50, 1384 https://doi.org/10.1021/jo00209a008
  96. Chandrasekharan, J.; Ramachandran, P. V.; Brown, H. C. J. Org. Chem. 1985, 50, 5446 https://doi.org/10.1021/jo00225a109
  97. Brown, H. C.; Park, W. S.; Cho, B. T.; Ramachandran, P. V. J. Org. Chem. 1987, 52, 5406 https://doi.org/10.1021/jo00233a019
  98. Brown, H. C.; Srebnik, M.; Ramachandran, P. V. J. Org. Chem. 1989, 54, 1577 https://doi.org/10.1021/jo00268a018
  99. Brown, H. C.; Ramachandran, P. V. J. Org. Chem. 1989, 54, 4504 https://doi.org/10.1021/jo00280a013
  100. Brown, H. C.; Ramachandran, P. V.; Chandrasekharan, J. Heteroatom Chem. 1995, 6, 117 https://doi.org/10.1002/hc.520060206
  101. Cha, J. S.; Kim, E. J.; Kwon, O. O.; Kim, J. M. Bull. Korean Chem. Soc. 1996, 17, 50
  102. Cha, J. S.; Kwon, O. O.; Lee, K. W.; Kim, J. M. Bull. Korean Chem. Soc. 2005, 26, 652 https://doi.org/10.5012/bkcs.2005.26.4.652
  103. Cha, J. S.; Kim, E. J.; Kwon, O. O.; Kwon, S. Y.; Seo, W. W.; Chang, S. W. Org. Prep. Proced. Int. 1995, 27, 541 https://doi.org/10.1080/00304949509458495
  104. Cha, J. S.; Kim, E. J.; Kwon, O. O.; Kim, J. M. Bull. Korean Chem. Soc. 1995, 16, 691
  105. Cha, J. S.; Kwon, O. O.; Kim, J. M. Bull. Korean Chem. Soc. 1996, 17, 725
  106. Cha, J. S.; Jang, S. H.; Kwon, S. Y.; Kwon, O. O. Bull. Korean Chem. Soc. 2004, 25, 603 https://doi.org/10.5012/bkcs.2004.25.5.603
  107. Cha, J. S.; Nam, H. T.; Jang, S. H.; Kwon, S. Y.; Park, S. J.; Kwon, O. O. Bull. Korean Chem. Soc. 2004, 25, 1948 https://doi.org/10.5012/bkcs.2004.25.12.1948
  108. Cha, J. S.; Park, J. H. Bull. Korean Chem. Soc. 2002, 23, 1051 https://doi.org/10.5012/bkcs.2002.23.8.1051
  109. Cha, J. S.; Park, J. H. Bull. Korean Chem. Soc. 2002, 23, 1377 https://doi.org/10.5012/bkcs.2002.23.10.1377
  110. Namy, J.-L.; Souppe, J.; Collin, J.; Kagan, H. B. J. Org. Chem. 1984, 49, 2045
  111. Lebrun, A.; Namy, J.-L.; Kagan, H. B. Tetrahedron Lett. 1991, 32, 2355
  112. Leyrit, P.; McGrill, C.; Quignard, F.; Choplin, A. J. Mol. Catal. A: Chem. 1996, 112, 395 https://doi.org/10.1016/1381-1169(96)00234-8
  113. Quignard, F.; Graziani, O.; Choplin, A. Appl. Catal. A: Gen. 1999, 182, 29 https://doi.org/10.1016/S0926-860X(98)00421-9
  114. Hfseggen, T.; Rise, F.; Undheim, K. J. Chem. Soc. Perkin Trans. 1 1986, 849 https://doi.org/10.1039/p19860000849
  115. Knauer, B.; Krohn, K. Liebigs Ann. 1995, 677
  116. Zhu, Y.; Jaenicke, S.; Chuah, G. K. J. Catal. 2003, 218, 396 https://doi.org/10.1016/S0021-9517(03)00160-X
  117. Ashby, E. C.; Argyropoulos, J. N. J. Org. Chem. 1986, 51, 3593 https://doi.org/10.1021/jo00369a008
  118. Ishii, Y.; Nakano, T.; Inada, A.; Kishigami, Y.; Sakurai, K.; Ogawa, M. J. Org. Chem. 1986, 51, 240 https://doi.org/10.1021/jo00352a021
  119. Nakano, T.; Umano, S.; Kino, Y.; Ishii, Y.; Ogawa, M. J. Org. Chem. 1988, 53, 3752 https://doi.org/10.1021/jo00251a016
  120. Chowdhurg, R.; Backvall, J.-E. J. Chem. Soc. Chem. Commun. 1991, 1063
  121. Petra, D. G. I.; Reek, J. N. H.; Schoemaker, P. C. J.; Leeuwen, P. W. N. M. Chem. Commun. 2000, 683
  122. Aranyos, A.; Csjernyick, G.; Szabo, K. J.; Backvall, J.-E. Chem. Commun. 2000, 683
  123. Henbest, H. B.; Mitchell, T. R. B. J. Chem. Soc. C 1970, 785
  124. Vinzi, F.; Zassinovich, G.; Mestron, G. J. Mol. Catal. 1983, 18, 359 https://doi.org/10.1016/S0304-5102(83)80008-X
  125. Maillard, D.; Nguefack, C.; Pozzi, G.; Quici, S.; Balada, B.; Sinon, D. Tetrahedron: Asymmetry 2000, 11, 2821
  126. Castellani, C. B.; Carugo, O.; Perotti, A.; Sacchi, D.; Invernizzi, A. G.; Vidari, G. J. J. Mol. Catal. 1993, 85, 65 https://doi.org/10.1016/0304-5102(93)87124-Q
  127. Molander, G. A.; Mckie, A. J. Am. Chem. Soc. 1993, 115, 5821 https://doi.org/10.1021/ja00066a059
  128. Warner, B. P.; D'Alessio, J. A.; Morgan, A. N.; Burns, C. J.; Schake, A. R.; Watkin, J. G. Inorg. Chim. Acta 2000, 309, 45 https://doi.org/10.1016/S0020-1693(00)00227-9
  129. Strickler, J. R.; Bruck, M. A.; Wexler, P. A.; Wigley, D. E. Organometallics 1990, 9, 266 https://doi.org/10.1021/om00115a039
  130. Evans, D. A.; Hoveyda, A. H. J. Am. Chem. Soc. 1990, 112, 6447 https://doi.org/10.1021/ja00173a071
  131. Okamoto, Y.; Imanaka, T.; Teranishi, S. Bull. Chem. Soc. Jpn. 1972, 45, 3207 https://doi.org/10.1246/bcsj.45.3207
  132. Kaspar, J.; Trovarelli, A.; Lenarda, M.; Graziani, M. Tetrahedron Lett. 1989, 30, 2705 https://doi.org/10.1016/S0040-4039(00)99104-4
  133. Kijenski, J.; Glinski, M.; Czarnecki, J. J. Chem. Soc. Perkin Trans. 2 1991, 1695
  134. Szollosi, G.; Bartok, M. Appl. Catal. A: Gen. 1998, 169, 263 https://doi.org/10.1016/S0926-860X(98)00015-5
  135. Szollosi, G.; Bartok, M. J. Mol. Structure 1999, 482-483, 13
  136. Szollosi, G.; Bartok, M. J. Mol. Catal. A: Chem. 1999, 148, 265 https://doi.org/10.1016/S1381-1169(99)00159-4
  137. Ivanov, V. A.; Bachelier, J.; Audry, F.; Lavalley, J. C. J. Mol. Catal. 1994, 91, 45 https://doi.org/10.1016/0304-5102(94)00017-4
  138. Aramendia, M. A.; Borau, V.; Jimenez, C.; Marinas, J. M.; Porras, A.; Urbano, F. J. J. Catal. 1996, 161, 829 https://doi.org/10.1006/jcat.1996.0246
  139. Aramendia, M. A.; Borau, V.; Jimenez, C.; Marinas, J. M.; Ruiz, J. R.; Urbano, F. J. J. Mol. Catal. A: Chem. 2001, 171, 153 https://doi.org/10.1016/S1381-1169(01)00081-4
  140. Aramendia, M. A.; Borau, V.; Jimenez, C.; Marinas, J. M.; Ruiz, J. R.; Urbano, F. J. Appl. Catal. A: Gen. 2003, 244, 207 https://doi.org/10.1016/S0926-860X(02)00213-2
  141. Posner, G. H.; Runquist, A. W.; Chapdelaine, M. S. J. Org. Chem. 1977, 42, 1202 https://doi.org/10.1021/jo00427a022
  142. Liu, S. H.; Jaenicke, S.; Chuah, G. J. Catal. 2002, 206, 321 https://doi.org/10.1006/jcat.2001.3480
  143. Zhu, Y.; Liu, S.; Jaenicke, S.; Chuah, G. Catal. Today 2004, 97, 249 https://doi.org/10.1016/j.cattod.2004.07.002
  144. Quignard, F.; Graziani, O.; Choplin, A. Appl. Catal. A: Gen. 1999, 173, 29
  145. Kumbhar, P. S.; Sanchez-Valente, J.; Lopez, J.; Figueras, F. Chem. Commun. 1998, 535
  146. Jyothi, T. M.; Raja, T.; Talawar, M. B.; Rajagopal, R.; Sreekumar, K.; RaO, B. S. Bull. Chem. Soc. Jpn. 2000, 73, 1425 https://doi.org/10.1246/bcsj.73.1425
  147. Jyothi, T. M.; Raja, T.; Talawar, M. B.; Rajagopal, R.; Sreekumar, K.; RaO, B. S. Syn. Commun. 2000, 30, 1573 https://doi.org/10.1080/00397910008087191
  148. Jyothi, T. M.; Talawar, M. B.; Sreekumar, K.; Sugunan, S.; RaO, B. S. J. Chem. Res.-S 1999, 674
  149. Jyothi, T. M.; Raja, T.; Sreekumar, K.; Talawar, M. B.; Rao, B. S. J. Mol. Catal. A: Chem. 2000, 157, 193 https://doi.org/10.1016/S1381-1169(99)00439-2
  150. Jyothi, T. M.; Raja, T.; Rao, B. S. J. Mol. Catal. A: Chem. 2001, 168, 187 https://doi.org/10.1016/S1381-1169(00)00527-6
  151. Aramendia, M. A.; Borau, V.; Jimenez, C.; Marinas, J. M.; Ruiz, J. R.; Urbano, F. J. Appl. Catal. A: Gen. 2001, 206, 95 https://doi.org/10.1016/S0926-860X(00)00588-3
  152. Aramendia, M. A.; Borau, V.; Jimenez, C.; Marinas, J. M.; Ruiz, J. R.; Urbano, F. J. J. Colloid Interface Sci. 2001, 238, 385 https://doi.org/10.1006/jcis.2001.7519
  153. Aramendia, M. A.; Borau, V.; Jimenez, C.; Marinas, J. M.; Ruiz, J. R.; Urbano, F. J. J. Chem. Soc. Perkin Trans. 2 2002, 1122
  154. Aramendia, M. A.; Borau, V.; Jimenez, C.; Marinas, J. M.; Ruiz, J. R.; Urbano, F. J. Appl. Catal. A: Gen. 2003, 249, 1 https://doi.org/10.1016/S0926-860X(03)00163-7
  155. Ruiz, J. R.; Jimenez- Sanchidrian, C.; Hidalgo, J. M.; Marinas, J. M. J. Mol. Catal. A: Chem. 2005, 246, 190 https://doi.org/10.1016/j.molcata.2005.11.002
  156. For review, Creyghton, E. J.; Downing, R. S. J. Mol. Catal. A: Chem. 1998, 134, 47 https://doi.org/10.1016/S1381-1169(98)00022-3
  157. Shabtai, J.; Lazar, R.; Biron, E. J. Catal. 1984, 27, 35 https://doi.org/10.1016/0304-5102(84)85068-3
  158. Huang, M.; Zielinski, P. A.; Moulod, J.; Kaliaguine, S. Appl. Catal. A: Gen. 1994, 118, 33 https://doi.org/10.1016/0926-860X(94)80087-1
  159. Berkani, M.; Lemberton, J. L.; Marezewski, M.; Perot, G. Catal. Lett. 1995, 31, 405 https://doi.org/10.1007/BF00808604
  160. Creyghton, E. J.; Ganeshie, S. D.; Downing, R. S.; van Bekkum, H. J. Chem. Commun. 1995, 1859
  161. Creyghton, E. J.; Ganeshie, S. D.; Downing, R. S.; van Bekkum, H. J. Mol. Catal. A: Chem. 1996, 115, 457 https://doi.org/10.1016/S1381-1169(96)00351-2
  162. van der Waal, J. C.; Tan, K.; van Bekkum, H. Catal. Lett. 1996, 41, 63 https://doi.org/10.1007/BF00811714
  163. van der Waal, J. C.; Kunkeler, P. J.; Tan, K.; van Bekkum, H. J. Catal. 1998, 173, 74
  164. Creyghton, E. J.; Ganeshie, S. D.; Downing, R. S.; van Bekkum, H. J. Mol. Catal. A: Chem. 1997, 115, 457 https://doi.org/10.1016/S1381-1169(96)00351-2
  165. Kunkeler, P. J.; Zuurdeeg, B. J.; van der Waal, J. C.; van Bokhoven, J. A.; Koningsberger, D. C.; van Bekkum, H. J. Catal. 1998, 180, 234 https://doi.org/10.1006/jcat.1998.2273
  166. Bortnovsky, O.; Sobalik, Z.; Wichterlova, B.; Bastl, Z. J. Catal. 2002, 210, 171 https://doi.org/10.1006/jcat.2002.3661
  167. Corma, A.; Domine, M. E.; Valencia, S. J. Catal. 2003, 215, 294 https://doi.org/10.1016/S0021-9517(03)00014-9
  168. Zhu, Y.; Chuah, G.; Jaenicke, S. J. Catal. 2004, 227, 1 https://doi.org/10.1016/j.jcat.2004.05.037
  169. Cheralathan, K. K.; Palanichamy, M.; Murugesan, V. Appl. Catal. A: Gen. 2004, 263, 219 https://doi.org/10.1016/j.apcata.2003.12.016
  170. House, H. O. Modern Synthetic Reactions, 2nd ed, W. A. Benjamin: Menlo Park, California, 1972: pp 89-95
  171. Lane, C. F. Aldrichimica Acta 1976, 9, 31, and references cited therein
  172. Johnson, M. R.; Rickborn, B. J. Org. Chem. 1970, 35, 1041 https://doi.org/10.1021/jo00829a039
  173. Yoon, N. M.; Lee, H. J.; Kang, J.; Chung, J. S. J. Korean Chem. Soc. 1975, 19, 468
  174. Krishnamurthy, S.; Brown, H. C. J. Org. Chem. 1977, 42, 1197 https://doi.org/10.1021/jo00427a021
  175. Hochstein, F. A.; Brown, W. G. J. Am. Chem. Soc. 1948, 70, 3484 https://doi.org/10.1021/ja01190a082
  176. Hutchins, R. O.; Kandsamy, D. J. Org. Chem. 1975, 40, 2530 https://doi.org/10.1021/jo00905a024
  177. Brown, H. C.; Weissman, P. M. J. Am. Chem. Soc. 1965, 87, 5614 https://doi.org/10.1021/ja00952a018
  178. Kim, S.; Moon, Y. C.; Ahn, K. H. J. Org. Chem. 1982, 47, 3311 https://doi.org/10.1021/jo00138a021
  179. Colman, J. P.; Finke, R. G.; Matlock, P. L.; Wahren, R.; Brauman, J. I. J. Am. Chem. Soc. 1976, 98, 4685 https://doi.org/10.1021/ja00431a078
  180. Ashby, E. C.; Lin, J. J. Tetrahedron Lett. 1975, 4453
  181. Ashby, E. C.; Lin, J. J.; Kovar, R. J. Org. Chem. 1976, 41, 1939 https://doi.org/10.1021/jo00873a011
  182. Cain, M. E. J. Chem. Soc. 1964, 3532 https://doi.org/10.1039/jr9640003532
  183. Iqbal, K.; Jackson, W. R. J. Chem. Soc. (C) 1968, 616
  184. Hochstein, F. A. J. Am. Chem. Soc. 1949, 71, 305 https://doi.org/10.1021/ja01169a082
  185. Brown, H. C.; Hess, H. M. J. Org. Chem. 1969, 34, 2206 https://doi.org/10.1021/jo01259a039
  186. Luche, J.-L. J. Am. Chem. Soc. 1978, 100, 2226
  187. Gemal, A. L.; Luche, J.-L. J. Am. Chem. Soc. 1981, 103, 5454
  188. Krishnamurthy, S.; Brown, H. C. J. Org. Chem. 1975, 40, 1864 https://doi.org/10.1021/jo00900a051
  189. Krishnamurthy, S.; Brown, H. C. J. Org. Chem. 1977, 42, 1197 https://doi.org/10.1021/jo00427a021
  190. Wilson, K. C.; Seidner, R. T.; Masamune, S. J. Chem. Soc. Chem. Commun. 1970, 213
  191. Ganem, B. J. Org. Chem. 1975, 40, 146 https://doi.org/10.1021/jo00889a047
  192. Fortunato, J. M.; Ganem, B. J. Org. Chem. 1976, 41, 2194 https://doi.org/10.1021/jo00874a028
  193. Yoon, N. M.; Gyoung, Y. S. J. Org. Chem. 1985, 50, 2443 https://doi.org/10.1021/jo00214a009
  194. Brown, H. C.; Krishnamurthy, S.; Yoon, N. M. J. Org. Chem. 1976, 41, 1778 https://doi.org/10.1021/jo00872a025
  195. Cha, J. S.; Nam, H. T.; Kwon, O. O. Unpublished results
  196. Cha, J. S.; Kim, E. J.; Kwon, O. O.; Kim, J. M. Bull. Korean Chem. Soc. 1994, 15, 1033
  197. Cha, J. S.; Nam, H. T.; Jang, S. H.; Kwon, S. Y.; Park, S. J.; Kwon, O. O. Bull. Korean Chem. Soc. 2004, 25, 1948 https://doi.org/10.5012/bkcs.2004.25.12.1948
  198. Cha, J. S.; Park, S. J.; Kwon, O. O. Unpublished results
  199. Cha, J. S.; Kwon, O. O.; Kwon, S. Y. Bull. Korean Chem. Soc. 1995, 16, 1009
  200. Cha, J. S.; Kwon, O. O.; Kwon, S. Y. Org. Prep. Proced. Int. 1996, 28, 355 https://doi.org/10.1080/00304949609356544
  201. Cha, J. S.; Kwon, O. O.; Kim, J. M.; Chun, J. H.; Lee, Y. S.; Lee, H. S.; Cho, S. D. Bull. Korean Chem. Soc. 1998, 19, 236
  202. Cha, J. S.; Kwon, S. Y.; Kwon, O. O.; Kim, J. M.; Song, H. Bull. Korean Chem. Soc. 1996, 17, 900
  203. Cha, J. S.; Nam, H. T.; Park, S. J.; Kwon, S. Y.; Kwon, O. O. Bull. Korean Chem. Soc. 2006, 27, In press https://doi.org/10.5012/bkcs.2006.27.5.667
  204. Masamune, S.; Bates, C. S.; Georghiou, P. E. J. Am. Chem. Soc. 1974, 96, 3686 https://doi.org/10.1021/ja00818a072
  205. Ravasio, N.; Antenori, M.; Gargano, M.; Mastrorilli, P. Tetrahedron Lett. 1996, 37, 3529 https://doi.org/10.1016/0040-4039(96)00604-1
  206. Boeckman, R. K., Jr.; Michalak, R. J. Am. Chem. Soc. 1974, 96, 1623 https://doi.org/10.1021/ja00812a074
  207. Masamune, S.; Bates, G. S.; Georghiou, P. E. J. Am. Chem. Soc. 1974, 96, 3686 https://doi.org/10.1021/ja00818a072
  208. Semmelhack, M. F.; Stauffer, R. D.; Yamashita, A. J. Org. Chem. 1977, 42, 3180 https://doi.org/10.1021/jo00439a015
  209. Ramasamy, K.; Kalyanasundaram, S. K.; Shanmugam, P. Synthesis 1978, 545
  210. Brimage, D. R. G.; Davidson, R. S.; Lambeth, P. F. J. Chem. Soc. C 1971, 1241 https://doi.org/10.1039/j39710001241
  211. Collman, J. P.; Finke, R. G.; Matlock, P. L.; Wahren, R.; Komoto, R.; Brauman, J. J. Am. Chem. Soc. 1978, 100, 1119 https://doi.org/10.1021/ja00472a016
  212. Halpern, J.; Wong, L.-Y. J. Am. Chem. Soc. 1968, 90, 6665
  213. Mahoney, W. S.; Brestensky, D. M.; Stryker, J. M. J. Am. Chem. Soc. 1988, 110, 291 https://doi.org/10.1021/ja00209a048
  214. Gemal, A. L.; Luche, J.-L. Tetrahedron Lett. 1981, 22, 4077
  215. Yoon, N. M.; Park, K. B.; Gyoung, Y. S. Tetrahedron Lett. 1983, 24, 5367 https://doi.org/10.1016/S0040-4039(00)87870-3
  216. Hutchins, R. O.; Kandasamy, D. J. Am. Chem. Soc. 1973, 95, 6131 https://doi.org/10.1021/ja00799a058
  217. Gribble, G. W.; Ferguson, D. C. J. Chem. Soc. Chem. Commun. 1975, 535
  218. Yamamoto, Y.; Toi, H.; Sonoda, A.; Murahashi, S.-I. J. Am. Chem. Soc. 1976, 98, 1965
  219. Andrews, G. C. Tetrahedron Lett. 1980, 21, 697 https://doi.org/10.1016/S0040-4039(00)71449-3
  220. Fung, N. Y. M.; de Mayo, P.; Schauble, J. H.; Weedon, A. C. J. Org. Chem. 1978, 43, 3977 https://doi.org/10.1021/jo00414a043
  221. Krishnamurthy, S. J. Org. Chem. 1981, 46, 4628 https://doi.org/10.1021/jo00335a082
  222. Brown, H. C.; Kulkarni, S. U. J. Org. Chem. 1977, 42, 4169 https://doi.org/10.1021/jo00445a049
  223. Yoon, N. M.; Cha, J. S. J. Korean Chem. Soc. 1978, 22, 259
  224. Gemal, A. L.; Luche, J.-L. J. Org. Chem. 1979, 44, 4187
  225. Yoon, N. M.; Kim, K. E. J. Org. Chem. 1987, 52, 5564 https://doi.org/10.1021/jo00234a011
  226. Luche, J.-L.; Gemal, A. L. J. Am. Chem. Soc. 1979, 101, 5848
  227. Paradisi, M. P.; Zecchini, G. P.; Ortar, G. Tetrahedron Lett. 1980, 21, 5085 https://doi.org/10.1016/S0040-4039(00)71141-5
  228. Krishnamurthy, S.; Brown, H. C. J. Am. Chem. Soc. 1976, 98, 3383 https://doi.org/10.1021/ja00427a061
  229. Brown, H. C.; Cha, J. S.; Nazer, B. J. Org. Chem. 1984, 49, 2073 https://doi.org/10.1021/jo00185a067
  230. Brown, H. C.; Krishnamurthy, S. J. Am. Chem. Soc. 1972, 94, 7159 https://doi.org/10.1021/ja00775a053
  231. Cha, J. S.; Yoon, M. S.; Lee, K. W.; Lee, J. C. Heterocycles 1988, 27, 1455 https://doi.org/10.3987/COM-88-4549
  232. Cha, J. S.; Lee, D. Y.; Moon, S. J. Bull. Korean Chem. Soc. 2001, 22, 661 https://doi.org/10.1007/BF02705779
  233. Corey, E. J.; Becker, K. B.; Varma, R. K. J. Am. Chem. Soc. 1972, 94, 8616 https://doi.org/10.1021/ja00779a074
  234. Corey, E. J.; Albonico, S. M.; Koelliker, U.; Schaaf, T. K.; Varma, R. K. J. Am. Chem. Soc. 1971, 93, 1491 https://doi.org/10.1021/ja00735a033
  235. Corey, E. J.; Varma, R. K. J. Am. Chem. Soc. 1971, 93, 7319 https://doi.org/10.1021/ja00755a036
  236. Brown, H. C.; Kramer, G. W.; Hubbard, J. L.; Krishnamurthy, S. J. Organomet. Chem. 1980, 188, 1 https://doi.org/10.1016/S0022-328X(00)83693-1
  237. Cha, J. S.; Min, S. J.; Kim, J. M.; Kwon, O. O.; Jeoung, M. K. Org. Prep. Proced. Int. 1993, 25, 444
  238. Krishnamurthy, S. Aldrichimica Acta 1974, 7, 55
  239. Brown, C. A.; Krishnamurthy, S. J. Organomet. Chem. 1978, 156, 111 https://doi.org/10.1016/S0022-328X(00)84869-X
  240. Brown, H. C.; Krishnamurthy, S. Tetrahedron 1979, 35, 567 https://doi.org/10.1016/0040-4020(79)87003-9
  241. Copez, J.; Valente, J. S.; Clacens, J.-M.; Figueras, F. J. Catal. 2002, 208, 30
  242. Zhu, Y.; Chuah, G.; Jaenicke, S. J. Catal. 2004, 227, 1 https://doi.org/10.1016/j.jcat.2004.05.037
  243. Cha, J. S.; Kwon, O. O.; Lee, K. W.; Kim, J. M. Bull. Korean Chem. Soc. 2005, 26, 652 https://doi.org/10.5012/bkcs.2005.26.4.652
  244. Cha, J. S.; Kwon, O. O. J. Org. Chem. 1997, 62, 3019 https://doi.org/10.1021/jo970083a
  245. Cha, J. S.; Kwon, O. O. Bull. Korean Chem. Soc. 1997, 18, 689
  246. Heinsohn, G. E.; Ashby, E. C. J. Org. Chem. 1973, 38, 4232 https://doi.org/10.1021/jo00964a004
  247. Winterfeldt, E. Synthesis 1975, 617
  248. Kwon, O. O.; Cha, J. S. Bull. Korean Chem. Soc. 2000, 21, 659
  249. Cha, J. S.; Moon, S. J.; Kwon, O. O.; Lee, Y. R. Bull. Korean Chem. Soc. 2000, 21, 128
  250. Cha, J. S.; Moon, S. J.; Park, J. H. J. Org. Chem. 2001, 66, 7514 https://doi.org/10.1021/jo010401c
  251. Huffman, J. W.; Charles, J. T. J. Am. Chem. Soc. 1968, 90, 6486 https://doi.org/10.1021/ja01025a045
  252. Krapcho, A. P.; Seidman, D. A. Tetrahedron Lett. 1981, 22, 179 https://doi.org/10.1016/0040-4039(81)80048-2
  253. Brown, H. C.; Weissman, P. M.; Yoon, N. M. J. Am. Chem. Soc. 1966, 88, 1458 https://doi.org/10.1021/ja00959a026
  254. Krishnamurthy, S.; Schubert, R. M.; Brown, H. C. J. Am. Chem. Soc. 1973, 95, 8486 https://doi.org/10.1021/ja00806a067
  255. Brown, H. C.; Heim, P.; Yoon, N. M. J. Am. Chem. Soc. 1970, 92, 1637 https://doi.org/10.1021/ja00709a037
  256. Brown, H. C.; Yoon, N. M. J. Am. Chem. Soc. 1966, 88, 1464 https://doi.org/10.1021/ja00959a027
  257. Yoon, N. M.; Brown, H. C. J. Am. Chem. Soc. 1968, 90, 2927 https://doi.org/10.1021/ja01013a033
  258. Hutchins, R. O.; Taffer, I. M.; Burgoyne, W. J. Org. Chem. 1981, 46, 5214 https://doi.org/10.1021/jo00338a031
  259. Yoon, N. M.; Kim, K. E. J. Org. Chem. 1987, 52, 5564 https://doi.org/10.1021/jo00234a011
  260. Brown, H. C.; Yoon, N. M. Chem. Commun. 1968, 1549
  261. Cha, J. S.; Park, J. H. Bull. Korean Chem. Soc. 2002, 23, 1377 https://doi.org/10.5012/bkcs.2002.23.10.1377
  262. Cha, J. S.; Park, S. J. Manuscript in preparation
  263. Doering, W. von E.; Aschner, T. C. J. Am. Chem. Soc. 1953, 75, 393 https://doi.org/10.1021/ja01098a040
  264. Campbell, E. J.; Zhou, H.; Ngugen, S. T. Org. Lett. 2001, 3, 2391 https://doi.org/10.1021/ol0162116
  265. Campbell, E. J.; Zhou, H.; Ngugen, S. T. Angew. Chem. Int. Ed. 2002, 41, 1020 https://doi.org/10.1002/1521-3773(20020315)41:6<1020::AID-ANIE1020>3.0.CO;2-S
  266. Streitweiser, A., Jr.; Wolfe, J. R.; Schaeffer, W. D. Tetrahedron 1959, 6, 338 https://doi.org/10.1016/0040-4020(59)80014-4
  267. Foley, W. M.; Welch, F. J.; La Combe, E. M.; Mosher, H. S. J. Am. Chem. Soc. 1959, 81, 2779 https://doi.org/10.1021/ja01520a042
  268. MacLeod, R.; Welch, F. J.; Mosher, H. S. J. Am. Chem. Soc. 1960, 82, 876 https://doi.org/10.1021/ja01489a028
  269. Burrows, E. P.; Welch, F. J.; Mosher, H. S. J. Am. Chem. Soc. 1960, 82, 880 https://doi.org/10.1021/ja01489a029
  270. Birtwistle, J. S.; Lee, K.; Morrison, J. D.; Sanderson, W. A.; Mosher, H. S. J. Org. Chem. 1964, 29, 37 https://doi.org/10.1021/jo01024a008
  271. Mosher, H. S.; La Combe, E. M. J. Am. Chem. Soc. 1950, 72, 3994, 4991 https://doi.org/10.1021/ja01167a044
  272. Mosher, H. S.; Parker, E. D. J. Am. Chem. Soc. 1956, 78, 4081 https://doi.org/10.1021/ja01597a059
  273. Mosher, H. S.; Stevenot, J. E.; Kimble, D. O. J. Am. Chem. Soc. 1956, 78, 4374 https://doi.org/10.1021/ja01598a049
  274. Mosher, H. S.; Loeffler, P. K. J. Am. Chem. Soc. 1957, 79, 903 https://doi.org/10.1021/ja01561a034
  275. Evans, D. A.; Nelson, S. G.; Gagne, M. R.; Muci, A. R. J. Am. Chem. Soc. 1993, 115, 9800 https://doi.org/10.1021/ja00074a057
  276. Zassinovich, G.; Mestroni, G. Chem. Rev. 1992, 92, 1051 https://doi.org/10.1021/cr00013a015
  277. Krasik, P.; Alper, H. Tetrahedron 1994, 50, 4347 https://doi.org/10.1016/S0040-4020(01)89371-6
  278. Hashiguchi, S.; Fujii, A.; Takehara, J.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1995, 117, 7562 https://doi.org/10.1021/ja00133a037
  279. Fujii, A.; Hashiguchi, S.; Uematsu, N.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1996, 118, 2521 https://doi.org/10.1021/ja954126l
  280. Gao, J.-X.; Ikariya, T.; Noyori, R. Organometallics 1996, 15, 1087
  281. Inoue, S.; Nomura, K.; Hashiguchi, S.; Noyori, R.; Izawa, Y. Chem. Lett. 1997, 957
  282. Matsumura, K.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1997, 119, 8738 https://doi.org/10.1021/ja971570a
  283. Ohkuma, T.; Ooka, H.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1995, 117, 2675 https://doi.org/10.1021/ja00114a043
  284. Noyori, R.; Hashiguchi, S. Acc. Chem. Res. 1997, 30, 97 https://doi.org/10.1021/ar9502341
  285. Midland, M. M.; Tramontano, A.; Zderic, A. J. Organometal. Chem. 1977, 134, C17 https://doi.org/10.1016/S0022-328X(00)93625-8
  286. Brown, H. C.; Pai, G. G. J. Org. Chem. 1982, 47, 1606 https://doi.org/10.1021/jo00347a058
  287. Midland, M. M.; McLoughlin, J. I. J. Org. Chem. 1984, 49, 1316 https://doi.org/10.1021/jo00181a048
  288. Midland, M. M.; McDowell, D. C.; Hatch, R. L.; Tramontano, A. J. Am. Chem. Soc. 1980, 102, 867 https://doi.org/10.1021/ja00522a083
  289. Brown, H. C.; Pai, G. G. J. Org. Chem. 1985, 50, 1384 https://doi.org/10.1021/jo00209a008
  290. Chandrasekharan, J.; Ramachandran, P. V.; Brown, H. C. J. Org. Chem. 1985, 50, 5446 https://doi.org/10.1021/jo00225a109
  291. Noyori, R.; Tomino, I.; Tanimoto, Y.; Nishizawa, M. J. Am. Chem. Soc. 1984, 106, 6709 https://doi.org/10.1021/ja00334a041
  292. Brown, H. C.; Park, W. S.; Cho, B. T.; Ramachandran, P. V. J. Org. Chem. 1987, 52, 5406 https://doi.org/10.1021/jo00233a019
  293. Brown, H. C.; Ramachandran, P. V.; Chandrasekharan, J. Hetroatom Chem. 1995, 6, 117 https://doi.org/10.1002/hc.520060206
  294. Fujita, M.; Takarada, Y.; Sugimura, T.; Tai, A. Chem. Commun. 1997, 1631
  295. Yin, J.; Huffman, M. A.; Conrad, K. M.; Armstrong III, J. D. J. Org. Chem. 2006, 71, 840 https://doi.org/10.1021/jo052121t
  296. Molander, G. A.; McKie, J. A. J. Am. Chem. Soc. 1993, 115, 5821 https://doi.org/10.1021/ja00066a059
  297. Nishide, K.; Shigeta, Y.; Obata, K.; Node, M. J. Am. Chem. Soc. 1996, 118, 13103 https://doi.org/10.1021/ja963098j
  298. Node, M.; Nishide, K.; Shigeta, Y.; Shiraki, H.; Obata, K. J. Am. Chem. Soc. 2000, 122, 1927 https://doi.org/10.1021/ja993546y
  299. Shiraki, H.; Nishide, K.; Node, M. Tetrahedron Lett. 2000, 41, 3437 https://doi.org/10.1016/S0040-4039(00)00395-6
  300. Ozeki, M.; Nishide, K.; Teraoka, F.; Node, M. Tetrahedron: Asymmetry 2004, 15, 895 https://doi.org/10.1016/j.tetasy.2004.01.020

Cited by

  1. Thirty Six Years of Research on the Selective Reduction and Hydroboration vol.32, pp.6, 2011, https://doi.org/10.5012/bkcs.2011.32.6.1808
  2. Calcium amidoborane, a new reagent for chemoselective reduction of α,β-unsaturated aldehydes and ketones to allylic alcohols vol.2, pp.14, 2012, https://doi.org/10.1039/c2ra01291j
  3. Relative Reactivity of Various Al-substituted-dialkylalans in Reduction of Carbonyl Compounds: A Theoretical Study on Substituent Effect vol.34, pp.8, 2013, https://doi.org/10.5012/bkcs.2013.34.8.2335
  4. Gas-phase cascade upgrading of furfural to 2-methylfuran using methanol as a H-transfer reactant and MgO based catalysts vol.6, pp.12, 2016, https://doi.org/10.1039/C5CY02021B
  5. ChemInform Abstract: Selective Reduction of Carbonyl and Epoxy Compounds Using Aluminum, Boron and Other Metal Reagents. Comparison of Reducing Characteristics Between the Meerwein-Ponndorf-Verley Type Reduction and Metal Complex Hydrides Reduction: A Review vol.39, pp.15, 2008, https://doi.org/10.1002/chin.200815240
  6. Reaction of lithium tris(tert-butylthiolato)hydridoaluminate with selected organic compounds containing representative functional groups vol.65, pp.1-2, 2009, https://doi.org/10.1007/s10847-009-9628-4
  7. Reaction of Sodium Cyanoaluminum Hydride with Selected Organic Compounds Containing Representative Functional Groups vol.29, pp.12, 2007, https://doi.org/10.5012/bkcs.2008.29.12.2379
  8. Regioselective Cleavage of Phenyl- or Alkyl-Substituted Epoxides with Al-Fluorodiisobutylalane vol.29, pp.2, 2007, https://doi.org/10.5012/bkcs.2008.29.2.301
  9. Reaction of Aldehydes and Ketones with Dichloroisopropoxyborane. Comparison of the Reducing Characteristics of Isopropoxyborane Derivatives vol.29, pp.4, 2007, https://doi.org/10.5012/bkcs.2008.29.4.885
  10. Selective Reduction of Carbonyl Compounds with B-Trifluoromethanesulfonyldiisopinocampheylborane in Ethyl Ether vol.30, pp.7, 2009, https://doi.org/10.5012/bkcs.2009.30.7.1658
  11. Regioselective Ring Cleavage of Phenyl- or/and Alkyl- Substituted Epoxides with Al-Methanesulfonyldiisobutylalane vol.30, pp.11, 2007, https://doi.org/10.5012/bkcs.2009.30.11.2823
  12. Selective Reduction of Organic Compounds with Al-Methanesulfonyldiisobutylalane vol.31, pp.4, 2007, https://doi.org/10.5012/bkcs.2010.31.04.840
  13. Regioselective Ring Cleavage of Phenyl- or/and Alkyl-Substituted Epoxides with Al-Trifluoromethanesulfonyldiisobutylalane. Comparison of Its Reactivity with Al-Methanesulfonyldiisobutylalane vol.31, pp.8, 2007, https://doi.org/10.5012/bkcs.2010.31.8.2135
  14. Selective Reduction of Organic Compounds with Al-Trifluoromethanesulfonyldiisobutylalane. Comparison of Its Reactivity with Al-Methanesulfonyldiisobutylalane vol.32, pp.1, 2011, https://doi.org/10.5012/bkcs.2011.32.1.219
  15. Normal electron demand Diels–Alder cycloaddition of indoles to 2,3-dimethyl-1,3-butadiene vol.67, pp.22, 2007, https://doi.org/10.1016/j.tet.2011.04.030
  16. Al(OtBu)3 as an Effective Catalyst for the Enhancement of Meerwein–Ponndorf–Verley (MPV) Reductions vol.16, pp.7, 2007, https://doi.org/10.1021/op300106v
  17. MPV-Reduction of C=O bond with Al-substituted-dialkylalan; A Theoretical Study on Relative Reactivity of Various Carbonyl Substrates vol.35, pp.2, 2007, https://doi.org/10.5012/bkcs.2014.35.2.546
  18. A Convenient Heterogeneous Reduction of Knoevenagel Product by Hantzsch Ester and Its Development into Reductive Alkylation of Malononitrile vol.32, pp.7, 2007, https://doi.org/10.1002/cjoc.201400144
  19. Methanol as a clean and efficient H-transfer reactant for carbonyl reduction: Scope, limitations, and reaction mechanism vol.317, pp.None, 2014, https://doi.org/10.1016/j.jcat.2014.06.023
  20. Thermal Reduction of CO2 with Activated Alkali Metal Aluminum Hydrides for Selective Methanation vol.34, pp.9, 2020, https://doi.org/10.1021/acs.energyfuels.0c01771