• Title/Summary/Keyword: MPH-preserving mapping

Search Result 2, Processing Time 0.019 seconds

C1 HERMITE INTERPOLATION WITH MPH CURVES USING PH-MPH TRANSITIVE MAPPINGS

  • Kim, Gwangil;Kong, Jae Hoon;Lee, Hyun Chol
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.3
    • /
    • pp.805-823
    • /
    • 2019
  • We introduce polynomial PH-MPH transitive mappings which transform planar PH curves to MPH curves in ${\mathbb{R}}^{2,1}$, and prove that parameterizations of Enneper surfaces of the 1st and the 2nd kind and conjugates of Enneper surfaces of the 2nd kind are PH-MPH transitive. We show how to solve $C^1$ Hermite interpolation problems in ${\mathbb{R}}^{2,1}$, for an admissible $C^1$ Hermite data-set, by using the parametrization of Enneper surfaces of the 1st kind. We also show that we can obtain interpolants for at least some inadmissible data-sets by using MPH biarcs on Enneper surfaces of the 1st kind.

PYTHAGOREAN-HODOGRAPH CURVES IN THE MINKOWSKI PLANE AND SURFACES OF REVOLUTION

  • Kim, Gwang-Il;Lee, Sun-Hong
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.121-133
    • /
    • 2008
  • In this article, we define Minkowski Pythagorean-hodograph (MPH) curves in the Minkowski plane $\mathbb{R}^{1,1}$ and obtain $C^1$ Hermite interpolations for MPH quintics in the Minkowski plane $\mathbb{R}^{1,1}$. We also have the envelope curves of MPH curves, and make surfaces of revolution with exact rational offsets. In addition, we present an example of $C^1$ Hermite interpolations for MPH rational curves in $\mathbb{R}^{2,1}$ from those in $\mathbb{R}^{1,1}$ and a suitable MPH preserving mapping.

  • PDF