• Title/Summary/Keyword: MPEG-II

Search Result 49, Processing Time 0.023 seconds

The Design of Vector Processor for MDCT/IMDCT of MPEG-II AAC (MPEG-II AAC의 MDCT/IMDCT를 위한 벡터 프로세서 설계)

  • 이강현
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.329-332
    • /
    • 1999
  • Currently, the most important technology is compression methods in the multimedia society. In audio compression, the method using human auditory nervous property is used. This method using psychoacoustical model is applied to perceptual audio coding, because human's audibility is limited. MPEG-II AAC(Advanced Audio Coding) is the most advanced coding scheme that is of benefit to high quality audio coding. The compression ratio is 1.4 times compared with MPEG-I layer-III. In this paper, the vector processor for MDCT/IMDCT(Modified Discrete Cosine Transform /Inverse Modified Discrete Cosine Transform) of MPEG-II AAC is designed.

  • PDF

Optimized DSP Implementation of Audio Decoders for Digital Multimedia Broadcasting (디지털 방송용 오디오 디코더의 DSP 최적화 구현)

  • Park, Nam-In;Cho, Choong-Sang;Kim, Hong-Kook
    • Journal of Broadcast Engineering
    • /
    • v.13 no.4
    • /
    • pp.452-462
    • /
    • 2008
  • In this paper, we address issues associated with the real-time implementation of the MPEG-1/2 Layer-II (or MUSICAM) and MPEG-4 ER-BSAC decoders for Digital Multimedia Broadcasting (DMB) on TMS320C64x+ that is a fixed-point DSP processor with a clock speed of 330 MHz. To achieve the real-time requirement, they should be optimized in different steps as follows. First of all, a C-code level optimization is performed by sharing the memory, adjusting data types, and unrolling loops. Next, an algorithm level optimization is carried out such as the reconfiguration of bitstream reading, the modification of synthesis filtering, and the rearrangement of the window coefficients for synthesis filtering. In addition, the C-code of a synthesis filtering module of the MPEG-1/2 Layer-II decoder is rewritten by using the linear assembly programming technique. This is because the synthesis filtering module requires the most processing time among all processing modules of the decoder. In order to show how the real-time implementation works, we obtain the percentage of the processing time for decoding and calculate a RMS value between the decoded audio signals by the reference MPEG decoder and its DSP version implemented in this paper. As a result, it is shown that the percentages of the processing time for the MPEG-1/2 Layer-II and MPEG-4 ER-BSAC decoders occupy less than 3% and 11% of the DSP clock cycles, respectively, and the RMS values of the MPEG-1/2 Layer-II and MPEG-4 ER-BSAC decoders implemented in this paper all satisfy the criterion of -77.01 dB which is defined by the MPEG standards.

IMPLEMENTATION OF MPEG-II AUDIO ENCODER USING ADSP-21020 (ADSP-21020을 이용한 MPEG-II 오디오 인코더의 구현)

  • Kim, Jae-Young;Lee, Byung-Chul;Lee, Key-Seo;Chung, Chin-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.977-979
    • /
    • 1995
  • MPEG-II is the international standard of compression for digital image and digital audio that is the most important in the multimedia environment. Now many researchers are developing relevant systems. MPEG-II consists of video, audio, system and the other part. In this paper, we have designed and demonstrated two channel audio encoder system that processes the audio compression part, and excutes layer II for complexity and psychoacoustic model II, with ADSP-21020 of Analog Device.

  • PDF

Implementation of MPEG Layer II Audio Decoder on OAK DSP Core (OAK DSP Core를 이용한 MPEG 계층 II 오디오 복호화기 구현)

  • Kim Soo-hyun;Kim Jin-ho;Lee Chang-won;Kim Hun-joong;Cha Hyung-tai
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.181-184
    • /
    • 1999
  • 본 논문에서는 MPEG-1 계층 II와 MPEG-2 계층 II LSF 오디오 복호기를 OAK DSP Core를 이용하여 실시간 응용이 가능하도록 구현하였다. Ungrouping시 이용되는 테이블을 효율적으로 사용하였으며 합성필터부의 RAM과 ROM의 크기 그리고 각 부분의 연산에 필요한 연산량을 최적화하기 위하여 알고리듬을 효율적으로 적용하였고 불필요한 연산 부분을 제거하거나 최적화 하였다.

  • PDF

A study on the Perceptual Model for MPEG II AAC Encoder (MPEG-II AAC Encoder의 perceptual Model에 관한 연구)

  • 구대성;김정태;이강현
    • Proceedings of the IEEK Conference
    • /
    • 2000.06c
    • /
    • pp.93-96
    • /
    • 2000
  • Currently, the most important technology is the compression methods in the multimedia society. Audio files are rapidly propagated through internet. MP-3 is offered to CD tone quality in 128Kbps, but 64Kbps below tone quality is abruptly down and high bitrate. on the other hand, MPEG-II AAC (Advanced Audio Coding) is not compatible with MPEG-I, but AAC has a high compression ratio 1.4 better than MP-3. Especially, AAC has max. 7.1 channel and 96KHz sampling rate. In this paper, the perceptual model is dealt with 44.1KHz sampling rate for SMR(Signal to Masking Ratio)

  • PDF

Enhanced Pre echo Control Algorithm for MPEG Audio Coders (MPEG 오디오 부호화기를 위한 향상된 프리 에코 컨트롤 알고리듬)

  • Lee Chang-Joon;Lee Jae-Seong;Park Young-Cheol
    • Journal of Broadcast Engineering
    • /
    • v.11 no.2 s.31
    • /
    • pp.191-199
    • /
    • 2006
  • This paper presents an efficient pre echo control scheme for MPEG Audio coders based on the psychoacoustic model II (PAM-II). Pre echo control is the final step for the calculation of masking threshold in the PAM II. It is to minimize the spread of quantization error over the processing frame. In the conventional encoders, pre echo is reduced by restricting the estimated masking threshold not to exceed the one obtained in the previous frame. The conventional method performs pre echo control not only for short blocks but also for long blocks, which lowers the masking threshold in long blocks and, in turn, increases the quantization noise level of corresponding blocks. This paper proposes an efficient pre echo control process. The test result shows a mean enhancement of more than 0.4 especially for complex signals on the ITU R 5 point audio impairment scale.

An Implementation of Sound Enhanced MPEG-1 Audio Decoder on Embedded OS Platform (음질향상 알고리즘을 내장한 MPEG-1 오디오 디코더의 Embedded OS 플랫폼에의 구현)

  • Hong, Sung-Min;Park, Kyu-Sik
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.8
    • /
    • pp.958-966
    • /
    • 2007
  • In this paper, we implement a sound-enhanced MPEG-1 audio decoder on embedded OS Platform. Low bit rate lossy audio codecs such as MP3, OGG, and AAC for mitigating the problems in storage space and network bandwidth suffer a major common problem such as a loss of high frequency fidelity of audio signal. This high frequency loss will reproduce only a band-limited low-frequency part of audio in the standard CD-quality audio. In order to overcome this problem, we embedded a sound enhancement algorithm into the MPEG-1 audio decoder and then the algorithms optimized according to the characteristic of the MPEG-1 audio layer I, II, III were implemented on an embedded OS platform. From the experimental results with spectrum analysis and listening test, we confirm the superiority of the proposed system compared to the standard MPEG-1 audio decoder.

  • PDF

Implementation of MDCT core in Digital-Audio with Micro-program type vector processor

  • Ku Dae Sung;Choi Hyun Yong;Ra Kyung Tae;Hwang Jung Yeun;Kim Jong Bin
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.477-481
    • /
    • 2004
  • High Quality CD, OAT audio requires that large amount of data. Currently, multi channel preference has been rapidly propagated among latest users. The MPEG(Moving Picture Expert Group) is provides data compression technology of sound and image system. The MPEG standard provides multi channel and 5.1 sounds, using the same audio algorithm as MPEG-l. And MPEG-2 audio is forward and backward compatible. The MDCT (Modified Discrete Cosine Transform) is a linear orthogonal lapped transform based on the idea of TDAC(Time Domain Aliasing Cancellation). In this paper, we proposed the micro-program type vector processor architecture a benefit in MDCT/IMDCT of MPEG-II AAC. And it's reduced operating coefficient by overlapped area to bind. To compare original algorithm with optimized algorithm that cosine coefficient reduced $0.5\%$multiply operating $0.098\%$ and add operating 80.58\%$. Algorithm test is used C-language then we designed hardware architecture of micro-programmed method that applied to optimized algorithm. This processor is 20MHz operation 5V.

  • PDF

A Real-time Implementation of the MPEG-2 Audio Encoder (MPEG-2 오디오 부호화기의 실시간 구현)

  • 김성윤;강홍구;김기수;윤대희;이준용;이종화
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1995.06a
    • /
    • pp.149-153
    • /
    • 1995
  • 본 논문에서는 TI(Texas Instrument)사의 범용 디지탈 프로세서인 TMS320C30을 이용하여 MPEG-2 계층2(Layer II) 오디오 부호화 알고리듬의 실시간 처리가 가능한 시스템을 구현하였다. 구현한 시스템은 1 채널의 오디오 신호를 처리하기 위한 Slave 보드 5개와 채널 멀티플렉싱과 부가 처리를 위한 Master 보드 1개로 이루어져 있다. MPEG-2 알고리듬의 각 단계별 소요시간을 계산한 후, 이를 바탕으로 각 프로세서에 할당하는 작업량을 조정하여 실시간 처리에 적합한 시스템을 구현하였다.