• Title/Summary/Keyword: MOLDFLOW

Search Result 99, Processing Time 0.02 seconds

An Analysis of Plastic Injection Molding Process for Automobile Gearbox Cover by Moldflow (Moldflow를 이용한 자동차 기어박스커버의 사출성형공정 해석)

  • Lho, Tae-Jung;Kim, Kyung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1494-1499
    • /
    • 2008
  • Plastic materials are utilized to the most important material of automobile interior-parts due to special characteristics that it is light, good strength and do not transmute quality even if pass long time. This study presented a preliminary analysis of fill time, weld line, air trap etc. for the plastic injection molding process of automobile gearbox cover through simulation using Moldflow.

A Study on the Injection Molding Process of Inline Skate Frame Using Moldflow (Moldflow를 이용한 인라인스케이트 프레임의 사출성형공정에 관한 연구)

  • Lee, Hyoung-Woo;Park, Chul-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.289-295
    • /
    • 2010
  • Injection molding process is one of the most important methods to produce plastic parts with high efficiency and low cost. Today, injection molded parts have been increased dramatically the demand for high strength and quality applications. In this study, In-line skates are made of Al alloy and plastic materials to replace the frame for the optimization process is all about. I interpreted through mold design, Injection molding process that minimizes the runner and the gate dimension will determine the size and shape. Runner and gate dimensions of change based on availability of the product, I'll discuss the injection molding. This report investigates that the optimum injection molding condition for minimum of shrinkage. The FEM Simulation CAE tool, Moldflow, is used for the analysis of injection molding process.

Dimensional Optimization of Electric Component in Ultra Thin-wall Injection Molding by Using Moldflow Simulation (초박육 사출성형에서 Moldflow 시뮬레이션을 활용한 전자부품의 형상 최적화)

  • Lee, Jung-Hee;Bae, Hyun-Sun;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.7
    • /
    • pp.1-6
    • /
    • 2020
  • Micro-structure components applied to various disciplines are steadily demanded with lighter weight and better quality. This is because that ultra thin-wall injection molding has been paid attention with a lot of benefits such as cost reduction, shorter process period, and so forth. However, this technology is complicate and difficult to obtain high quality of products compared with conventional injection molding due to warpage caused by uneven shrinkage and molecular orientation. Since warpage of products directly affects product quality and overall performance of devices, it is essential to predict deformation behavior to achieve high precision of molded products. Therefore, this study aims to find out adequate thin-wall mold design for FPC connector housing by employing Moldflow simulation before application. In addition, experimental research is performed by using a fabricated mold structure based on simulated results to prove accuracy and reliability of the suggested simulation for warpage analysis.

A study on the Injection Molding Process of the Case of Drum Type Washer using Moldflow (Moldflow를 이용한 드럼세탁기 케이스의 사출성형공정에 관한 연구)

  • Park, Chul-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.90-96
    • /
    • 2009
  • Injection molding process is one of the most important methods to produce plastic parts with high efficiency and low cost. Today, injection molded parts have been increased dramatically the demand for high strength and quality applications. This report investigates that the optimum injection molding condition for minimum of shrinkage. Molding shrinkage is occurred by several reasons such as thermal shrinkage, a hardening process and compressibility. This report concentrate on shrinkage by a hardening process. As Change a holding pressure and holding time, checked deflections of X, Y, Z directions by shrinkage based on same condition. In conclusion, it was found that holding pressure is stronger and holding time is longer, the deflection by shrinkage is smaller because injection molding needs enough time for cooling and high density. The FEM Simulation CAE tool. Moldflow, is used for the analysis of injection molding process.

A Study on Implementation of Al-Inserted Plastic Injection Molding Process for Automobile Interior-Parts (자동차부품용 알루미늄인서트 사출성형공정 구현에 관한 연구)

  • Lho, Tae-Jung;Kim, Kyung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.5
    • /
    • pp.43-51
    • /
    • 2008
  • Generally a plastic injection molding is a manufacturing process used to produce the various parts of complicated shape at low cost. The objective of this study is to implement a new plastic injection molding process with inserted Aluminum sheet, which is highly durable, light and luminous. Moldflow analysis and simulation of plastic injection molding process with inserted Aluminum sheet were carried out in order to predict optimal molding operation conditions. The experimental results in the Al-inserted plastic injection molding process were compared with the simulation results by Moldflow. Durability and reliability test results for trial products were satisfied to adopt the Al-inserted plastic injection molding process developed as manufacturing of automobile interior parts.

Application of CAE in Injection Molding Process of Automobile Part (컴퓨터지원공학(CAE)을 활용한 자동차 부품 개선)

  • Cho, Junghwan;Chang, Woojin;Park, Young Hoon;Choe, Soonja
    • Applied Chemistry for Engineering
    • /
    • v.18 no.5
    • /
    • pp.407-414
    • /
    • 2007
  • Using the MPI (Moldflow Plastics Insight) software from Moldflow Co., the optimum conditions for producing the upper part of the automobile air cleaner were obtained for 20% talc filled polypropylene (PP). The analysis was carried out to solve the cracking problem between upper and lower parts and the improved process was proposed using the flow balance. The comparative results between the conventional process, CASE-1, with one-pin gate and the new process (CASE-2) comprising two-pin gate system are the followings. In the case of CASE-2, the shorter filling time and reduced cycle time induced an improved production and processibility. In addition, the orientation and volumetric shrinkage are similar to those observed in the lower part, but the assembly, deformation, and physical characteristics are enhanced. The problem induced by the CASE-1 did not originate from the residual stress, but from the difference in the size of the upper part air cleaner after shrinkage. Thus, the orientation problem was expected to improve by optimizing the gate structure.

Effect of Flow Pattern of Coolant for Injection Mold on the Deformation of Injection Molding (사출금형 냉각수의 유동 패턴이 사출성형품의 변형에 미치는 영향)

  • Choi, Kye-Kwang;Hong, Seok-Moo;Han, Seong-Ryeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.92-99
    • /
    • 2015
  • The deformation of injection molding is seriously affected by injection molding conditions, such as melt and mold temperature and injection and holding pressure. In these conditions, the mold temperature is controlled by flowing coolant, which can be classified by the Reynolds number in the mold-cooling channel. In this study, the deformation of the automotive side molding according to the variation of the Reynolds number in the coolant was simulated by Moldflow. In the results, as the Reynolds number was increased, the mold cooling was also increased. However, when the Reynolds number exceeded a certain range, the mold cooling was not increased further. In addition to the Moldflow verification, the mold cooling by the coolant was simulated by CFX. The CFX results confirmed that the Reynolds number significantly influenced the mold cooling. The coolant, which has a high Reynolds number value, quickly cooled the mold. However, the coolant, which has a low Reynolds number value, such as 0 points, hardly cooled the mold. In an injection molding experiment, as the Reynolds number was high, the deformation of the moldings was reduced. The declining tendency of the deformation was similar to the Moldflow results.

Injection Molding and Structure Analysis of Inline Skate Frames Using FEA (유한요소해석을 이용한 인라인스케이트 프레임의 사출성형해석 및 구조해석에 관한 연구)

  • Park, Chul-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1507-1514
    • /
    • 2011
  • Injection molding is the most commonly used process that uses plastic material. Today, the uses of plastic material are continuously increasing, and the range of application is also being extended by the development of novel materials. An inline skate consists of 4 components: the boot, frame, wheel and brake. Among these components, the frame is the most critical. The injection formability for a variety of injection materials for inline skate frames was studied. We also studied the injection formability of the product for various sizes of the runner and gate. In this study, injection molding analysis was performed using MOLDFLOW, and structural analysis was performed using ANSYS.