• Title/Summary/Keyword: MOI(Moment of Inertia)

Search Result 3, Processing Time 0.016 seconds

Study on the Estimation of Measurement Uncertainty in MOI Measurement (관성모멘트 측정에서의 불확도 추정기법 연구)

  • Kim, Kwang-Ro;Lee, Young-Shin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.797-802
    • /
    • 2013
  • In this paper, using the mass/CG measurement equipment and the MOI measurement equipment developed in-house, Pitch MOI and Roll MOI of test specimen were measured and measurement uncertainties on MOI were studied. The possible factors of the measurement uncertainty that could affect accuracy of MOI measurement were mass, spring, frequency, and length measurement-related elements. The each combined standard uncertainty of pitch MOI and roll MOI was estimated from the uncertainties of the above various factors.

The Confidence Estimation of MOI Measurement Equipment using Uncertainty Analysis (불확도 분석을 이용한 관성모멘트 측정장비의 신뢰도평가)

  • Kim, KwangRo;Kang, HuiWon;Shul, ChangWon
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.3
    • /
    • pp.53-57
    • /
    • 2018
  • The Monte Carlo simulation (MCS) method and the Guide to the Expression of Uncertainty in Measurement (GUM) are the most widely used approaches for uncertainty estimation. In this paper, MCS and GUM were used to estimate the confidence of MOI measurement equipment developed in-house. According to the results, the GUM estimated uncertainty was slightly underestimated compared to the MCS method. This difference is due to the approximation used by GUM. MOI uncertainties estimated by both methods were less than 1% of the estimate, which shows the high measurement reliability of the developed MOI measurement system.

Design and Development of Signal Transmitting POD for Aircraft Application (항공기용 신호 송출 POD의 설계 및 개발)

  • Kim, Jee-heung;Kwak, Young-kil;Kim, Kichul;Park, Joo-rae
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • In this research, we develop an airborne equipment radiating S/C-band signal to a target located at a long distance. RF interface of the equipment comprises band-specific transmitters and an broadband antenna to satisfy EIRP(effective isotropic radiated power) requirements. The equipment is in a shape of a POD like an aircraft fuel tank. The measured weight of the equipment is 119.8 kg, the CG(center of gravity) is 1391.35 mm and the MOI(moment of inertia) are 46.07 ± 0.05(Iyy) kg·㎡, 45.36 ± 0.09(Izz) kg·㎡. All results are found to meet the requirements for aircraft installation. To verify flight safety, EMI(electromagnetic interference) tests (RE102, CE102), environmental tests (high/low temperature operation, altitude), intra-system EMC(electromagnetic compatibility) and HERP(hazards electromagnetic radiation personnel) tests have been conducted and all the test results met the requirements. It is confirmed that the equipment could be mounted on the aircraft by meeting all electrical and mechanical requirements.