• Title/Summary/Keyword: MOERI ice tank

Search Result 5, Processing Time 0.021 seconds

Comparison of EG/AD/S and EG/AD model ice properties

  • Kim, Jung-Hyun;Choi, Kyung-Sik
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.1
    • /
    • pp.32-36
    • /
    • 2011
  • EG/AD/S type model ice was originally selected as the primary model ice material for the MOERI ice tank in Korea. The existence of a sugar component in the EG/AD/S mixture may cause a serious maintenance problem. In order to understand the influence of sugar in the original model ice, a series of tests with EG/AD/S and EG/AD model ices were performed, and their material properties compared. Because the target strength of model ice in the full-scale MOERI ice tank is expensive and difficult to control, tests were performed under cold room conditions using a miniature ice tank. This paper describes the material properties of EG/AD/S and EG/AD model ices, such as flexural strength, compressive strength and elastic modulus. In order to obtain the desired strength and stiffness levels for the model ice, a warm-up process was introduced.

A study on the optimum operation of model ice in Maritime & Ocean Engineering Research Institute(MOERI) (빙수조 모형빙 활용 최적화 방안 연구)

  • Kim, Hyun Soo;Lee, Chun-Ju;Jeong, Uh-Cheul
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.4
    • /
    • pp.109-115
    • /
    • 2011
  • The ice tank is important facility to check the performance of the ship and offshore in ice condition before the construction. MOERI(Maritime & Ocean Engineering Research Institute) constructed ice model basin on the end of 2010. The ice technology to know the phenomena of ice near the ship and to estimate power of the ship in model scale is the main characteristic of the ice model basin. To achieve this goal in one ice sheet, making of test plan and feasibility check of test possibility have to review in the beginning stage of the every test. This paper describes the number of maximum resistance and self propulsion test in a sheet of level ice and proposes the methodology to optimize pack ice, rubble ice, brash ice and ice ridge test in MOERI ice tank. The feasibility of free running test to know maneuvering performance in ice field and some specific idea to measuring ice thickness and ice ridge shape was proposed.

An Experimental Study for the Mechanical Properties of Model Ice Grown in a Cold Room (Cold Room을 이용한 모형빙의 재료특성에 관한 실험적 연구)

  • Kim, Jung-Hyun;Choi, Kyung-Sik;Jeong, Seong-Yeob;Seo, Young-Kyo;Cho, Seong-Rak;Lee, Chun-Ju
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.64-70
    • /
    • 2008
  • A full-scale field experiment is an important part in the design of ships and offshore structures. Full-scale tests in the ice-covered sea, however, are usually very expensive and difficult tasks. Model tests in a refrigerated ice tank may substitute this difficulty of full-scale field tests. One of the major tasks to perform proper model tests in an ice towing tank is to select a realistic material for model ice which shows correct similitude with natural sea ice. This study focuses on the testing material properties and the selection of model ice material which will be used in an ice model basin. The first Korean ice model basin will be constructed at the Maritime & Ocean Engineering Research Institute (MOERI) in 2009. With an application to the MOERI ice model basin, in this study the material properties of EG/AD/S model ice of IOT (Institute for Ocean Technology) Canada, were tested. Through comprehensive bending tests, the elastic modulus and the flexural strength of EG/AD/S model ice were evaluated and the results were compared with published test results from Canada. Instead of using an ice model basin, a cold room facility was used for making a model ice specimen. Since the cold room adopts a different freezing procedure to make model ice, the strength of the model ice specimen differs from the published test results. The reason for this difference is discussed and the future development for a making model ice is recommended.

The Measuring Methodology of Friction Coefficient between Ice and Ship Hull (빙-선체 마찰계수 측정 기법)

  • Cho, Seong-Rak;Chun, Eun-Jee;Yoo, Chang-Soo;Jeong, Seong-Yeob;Lee, Chun-Ju
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.4
    • /
    • pp.363-367
    • /
    • 2011
  • In this paper, friction coefficients between ices and model ship were studied in order to predict the resistance of ice. The friction coefficient is a dimensionless scalar value which describes the ratio of the force of friction between two bodies and the force pressing them together. The coefficient of friction depends on the materials, roughness on surface, lubrication, etc. We tested and analyzed the friction coefficient for the development of the test methodology. The friction coefficient for ice model test is very dominant to predict the ship performance, so every ice tank uses their own painting technique. In this study, the friction coefficient with changing the moving speed of ice was studies by using a flat plates which were made by the MOERI's paining technique and the basic research for the developing the paining methodology in the MOERI ice model basin was carried out.

An Experimental Study on the Material Properties of the EG/AD Model Ice Used for Ice Model Basins (빙해수조용 EG/AD 모형빙의 재료특성 실험)

  • Kim, Jung-Hyun;Choi, Kyung-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.49-55
    • /
    • 2011
  • The EG/AD/S model ice, originally developed by Timco (1986), was selected as the primary model ice material for the newly built MOERI Ice Model Basin in Korea. However, the existence of a sugar component in the EG/AD/S mixture may cause a serious maintenance problem, as described in certain references. This study focuses on the tests of the mechanical properties of the EG/AD/S and the EG/AD model ice. In order to understand the influence of sugar in the original EG/AD/S model ice and to find a possible substitute for sugar, a series of tests with the EG/AD model ice were performed, and the results were compared to those of the EG/AD/S model ice. The relatively large size of the MOERI Ice Model Basin made it difficult to control the initial strength of model ice, so it took a much longer time to achieve the target strength. In order to obtain a lower strength and stiffness for the model ice, the amount of chemical additives may be varied to achieve the desired strength level. This paper is a preliminary study aimed at seeking a possible substitute for the original EG/AD/S model ice for utilization in a large-scale ice tank. To understand the influence of sugar in the original EG/AD/S model ice, the mechanical properties of the EG/AD/S and EG/AD model ice, such as flexural strength, compressive strength, and elastic modulus, were tested in the laboratory condition and compared to each other. The warm-up procedure seems to be an important factor to reduce ice strength in the tests, so it is discussed in detail.