• 제목/요약/키워드: MOE(Modulus of Elasticity)

Search Result 84, Processing Time 0.026 seconds

Effect of Panel Density and Resin Content on Properties of Medium Density Fiberboard

  • Hong, Min-Kug;Lubis, Muhammad Adly Rahandi;Park, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.444-455
    • /
    • 2017
  • This study was conducted to evaluate the effect of panel density and resin content on properties of medium density fiberboard (MDF) to obtain some insights on MDF properties as a function of panel density and resin content. MDF panels with different panel densities such as 650, 700, 750 and $800kg/m^3$ were manufactured by adjusting the amount of wood fibers in the mat forming. MDF panels were also fabricated by spraying 8, 10, 12, and 14% of urea-formaldehyde (UF) resins onto wood fibers in a drum-type mechanical blender to fabricate MDF panels with a target density of $650kg/m^3$. As the panel density and resin content increased, the internal bonding (IB) strength of MDF panel consistently increased. Modulus of rupture (MOR), modulus of elasticity (MOE) and screw withdrawal resistance (SWR) had a similar trend to the IB strength. In physical properties, thickness swelling (TS) and water absorption (WA) decreased with an increase in both panel density and resin content. In addition, the formaldehyde emission (FE) which increased as the panel density and resin content became greater. In overall, the panel density of MDF had more significant effect than the resin content in all properties of MDF panels, indicating that it was better to adjust the panel density rather than the resin content for MDF manufacture.

Thin Hardboard Manufacture from Waste Lignocellulosic Papers as Overlay Substitutes in Low Grade Plywood and Particle Board Panels(I) (고지로부터 저급합판 및 파아티클보오드 표면단판으로 사용될 수 있는 박판 하아드보오드의 제조(I))

  • Lee, Byung-Guen;Lee, Sang-Yeob
    • Journal of the Korean Wood Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.19-25
    • /
    • 1994
  • The purpose of this study was to determine the technical feasibility of making 3-dimensional thin hardboard panels for overlay substitutes of low grade particleboard and plywood panels. Experimental studies were directed at assembling bench-top apparatus, learning the characteristics of different types of lignocellulosic waste papers, for making thin hardboard with several combinations of them with and without resin addition. The raw materials used are waste corrugated cartons, cereal boxes, and old magazines which contain substantial amount of lignin in it. The experimental results showed that satisfactory thin(0.21~0.16cm) hardboard could be made from the residential mixed waste papers that have selected properties comparable to commercial 0.32cm hardboard. The significant mixing ratio effect of the waste papers was present on the thickness swelling, water absorption, linear expansion, and modulus of elasticity including Taber abrasion tests of the thin hardboard made. The mixing ratio of waste papers and resin in the thin hardboard prominently affected the specific gravity of it, which led to affect modulus of elasticity and those physical properties sensitively. And it was shown that the hardboard containing those physical properties can be used for overlay substitutes of low grade plywood and particleboard panels.

  • PDF

Effect of Green Tea and Saw Dust Contents on Static Bending Strength Performance of Hybrid Boards Composed of Wood Fiber, Saw Dust and Green Tea (목재섬유, 톱밥 및 녹차 이종복합보드의 정적 휨 강도성능에 미치는 녹차 및 톱밥 배합비율의 영향)

  • Park, Han-Min;Lee, Soo-Kyeong;Seok, Ji-Hoon;Choi, Nam-Kyung;Kwon, Chang-Bae;Heo, Hwang-Sun;Kim, Jong-Chul
    • Journal of agriculture & life science
    • /
    • v.45 no.6
    • /
    • pp.41-46
    • /
    • 2011
  • In this study, in addition to the green tea-wood fiber hybrid composite boards of previous researches, to make effective use of saw dust of domestic cypress tree with functionalities and application as interior materials, eco-friendly hybrid composite boards were manufactured from wood fiber, green tea and saw dust of cypress tree. We investigated the effect of the component ratio of saw dust and green tea on static bending strength performances. Static bending MOE (modulus of elasticity) was within 0.956~1.18GPa, and showed the highest value in wood fiber : green tea : saw dust = 50 : 40 : 10 of the component ratio, and had the lowest value in 50 : 30 : 20 of component ratio. These values were 2.0~3.1times lower than those of green tea-wood fiber hybrid composite boards reported in the previous researches. The bending MOR (modulus of rupture) showed 8.99~11.5MPa, the change of the bending MOR with component ratio of the factors was the same as that of bending MOE. These values had 1.9~3.5 times lower value than those of green tea-wood fiber hybrid composite boards, and showed the slightly lower values than the MOR of particle boards (PB) and medium density fiberboards (MDF) prescribed in Korean Industrial Standard. Therefore, it is considered that these hybrid composite boards need to improve strength performances by component ratio change, hybrid composite with other materials and adhesive change etc. in order to industrialize the hybrid composite boards.

Effect of Green Tea Content on Static Bending Strength Performance of Hybrid Boards Composed of Green Tea and Wood Fibers (녹차-목재섬유복합보드의 정적 휨 강도성능에 미치는 녹차배합비율의 영향)

  • Park, Han-Min;Kang, Dong-Hyun;Lim, Na-Rea;Lee, Soo-Kyeong;Jung, Kang-Won;Kim, Jong-Chul;Cho, Kyeong-Hwan
    • Journal of agriculture & life science
    • /
    • v.44 no.5
    • /
    • pp.1-8
    • /
    • 2010
  • In this study, eco-friendly hybrid composite boards were manufactured from green tea and wood fibers for application as interior materials with various functionalities of green tea and strong strength properties of wood fibers. In this relation, the effect of green tea content on the static bending strength performances of these green tea and wood fibers composite boards were investigated. Static bending strengths of hybrid composite boards were lower than those of control boards and decreased with the increase of green tea content. Also, the strength performances appeared to be somewhat different by resin type used for board manufacture. The hybrid composite boards manufactured from $E_1$ grade urea resin adhesive, which has higher molar ratio of formaldehyde to urea than that of $E_0$ grade one, were 1.08~1.53 times higher in bending modulus of elasticity (MOE) and 1.19~1.82 higher in modulus of rupture (MOR) than that manufactured from $E_0$ grade. And, the differences of MOE and MOR between hybrid composite boards manufactured from $E_0$ grade and $E_0$ grade urea resin adhesive increased with the increase of green tea content. In the case of hybrid composite boards manufactured from $E_1$ grade urea resin adhesive, the MOR was within 0.94~1.03 times the commercial medium density fiberboard. Thus, it was thought that eco-friendly hybrid composite boards with various functionalities and strong strength performances could be manufactured from green tea and wood fibers.

Static Bending Strength Performances of Hybrid Laminated Woods Composed of Wood-Wood Based Boards (목재와 목질보드 복합적층재의 휨강도성능)

  • Park, Han-Min;Moon, Sung-Jae;Choi, Yoon-Eun;Park, Jung-Hwan;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.546-555
    • /
    • 2009
  • To study an effective use of woods, three-ply hybrid laminated woods instead of crosslaminated woods which are composed of spruce in the face and three kinds of wood-based boards (MDF, PB, OSB) in the core were manufactured, and the effect of constitution elements for the core laminae on bending strength performances was investigated. Bending modulus of elasticity (MOE) of hybrid laminated woods had the highest values for the hybrid laminated wood types arranging OSB laminae in the core, and had the lowest values for those arranging MDF laminae in the core. These values were higher than those of various cross-laminated woods. The estimated bending MOEs of the hybrid laminated woods which were composed of perpendicular-direction lamina of spruce in the faces were similar to their measured values, regardless of wood-based boards in the core. However, those of the hybrid laminated woods which were composed of parallel-direction lamina of spruce in the faces had much higher values than those of their measured values, and it was necessary to revise the measured values. Bending modulus of rupture (MOR) of the hybird laminated woods had the highest value for those arranging OSB laminae in the core, and had the lowest values for those arranging PB laminae in the core unlike the bending MOE. By hybrid laminating, the anisotropy of bending strength performances was markedly decreased, and the differences of strength performances among wood-based boards were also considerably decreased.

Development of Pitch Pine Glued Laminated Timber for Structural Use -Improvement of Bending Capacity of Pitch Pine Glulam by Using Domestic Larch Laminars- (리기다소나무의 구조용 집성재 이용기술 개발 -낙엽송 층재와의 혼합 구성을 통한 집성재의 휨성능 향상-)

  • Kim, Kwang-Mo;Shim, Kug-Bo;Park, Joo-Saeng;Kim, Wun-Sub;Lim, Jin-Ah;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.13-22
    • /
    • 2007
  • This study was carried out to scrutinize possibility of manufacturing pitch pine (Pinus rigida) glued laminated timber in order to add values of pitch pine trees. Also, it was investigated to improve bending performance of pitch pine glulam. Pitch pine was imported as one of major plantation species in Korean peninsula. Machine stress rated grades of pitch pine lumber mostly ranged between E7 and E9. which grades were more or less inferior to producing high quality glulam. However, the adhesive properties between pitch pine and pitch pine, and between pitch pine and Japanese larch (Larix kaempferi Carr.), such as shear bond strength, wood failure rate and de-lamination rate of bonded layer submerged in cold and boiling water, were higher than Korean Standard criteria. These properties are essential for manufacturing glulam with single species or multiple species. The modulus of rupture (MOR) of pitch pine glulam exceeded the criterion of Korean Standard for glulam strength grade but modulus of elasticity (MOE) was lower than the criterion. On the other hand, the bending performances (MOR and MOE) were improved 20 percent by mixing with Japanese larch laminar. It is effective to arrange higher quality Japanese larch laminar at the outer layer of glulam for improving bending performances. In conclusion, it is possible to use low quality pitch pine as laminar of structural glulam for adding values of pitch pine.

Effect of Press Temperature and Time on Physical Properties of Larch Particleboard (압체온도(壓締温度)와 시간(時間)이 낙엽송(落葉松) 파티클 보오드의 물리적(物理的) 특성(特性)에 미치는 영향(影響))

  • Lee, Phil Woo;Chung, Gyun
    • Journal of Korean Society of Forest Science
    • /
    • v.63 no.1
    • /
    • pp.12-20
    • /
    • 1984
  • This research was performed to estimate the properties of particleboard based on the press time and temperature which was made of chip of larch that grows in Korea. The results in this study were as follows: 1) Even though the chips, 1:1-35 ratio between length and thickness, are relatively bad condition, the surface smoothness that can easily spread the adhesive evenly and thoroughly and bonding ability of chips can give proper physical properties. 2) It shows more mechanical properties at the press time of 10 min. in MOR (Modulus of Rupture), MOE (Modulus of Elasticity) and SHA (Screw Holding Ability). 3) It is not significant according to the press time 20 min. in MOR, IBS (Internal Bonding Strength) and SHA, for the reciprocal actions between the accelerating aging effect of chip and the softening effect of adhesion are occured. 4) IBS is rising according to the increasing temp at the press time of 10 min. Because it needs to transfer the plate heat to make the proper hardening temp. In the layer. 5) The heat treatment effects have greatly influenced the stahility of dimension by falling the absorption, anisotropy and inhomegenity. As a result of these the values of thickness and linear expansion ratio were respectively dropped by the increase of press temp and the time and so did absorption.

  • PDF

Effect of Combining Wood Particles and Wire Net on the Physical Properties of Board (목재(木材)파티클과 철강결체(鐵鋼結締)가 보오드의 물리적(物理的) 성질(性質)에 미치는 영향(影響))

  • Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.3-26
    • /
    • 1985
  • The object of this study was to investigate the effects on physical and mechanical properties of wood particle and sawdust board combined with wire net. Conventional forming, press-lam, and veneer comply boards combining one to four wire net sheets were made from wood particle and sawdust with different spacings (8, 10, 12, and 18 Mok) and different wire diameters (0.35, 0.50, and 0.80mm) composing wire net. They were compared and analyzed statistically with specific gravity, thickness swelling, length swelling, bending properties (modulus of rupture, modulus of elasticity, work to proportional limit, and total work), internal bonding strength, and screw holding strength between wood particle and sawdust boards. The results obtained at this study as cording to the discussions might be concluded as follows; 1. In specific gravity, both particle and sawdust boards by press-lam method were higher than by conventional forming and veneer comply method, and the boards containing more wire net sheets also showed higher value. But the wire net spacings(Mok) had no influence on specific gravity. In general, particle board showed higher specific gravity than sawdust board. Veneer comply board showed lowest specific gravity values. 2. Both particle and sawdust boards by press-lam method was slightly lower than by conventional forming and veneer comply method in thickness swelling. The sawdust board containing 8, 12. and 18 Mok wire net showed lower thickness swelling than the corresponding particle board, but both sawdust and particle boards containing the T8 and 10 Mok wire net showed higher and similar thickness swelling. 3. Both particle and sawdust boards containing wire net showed no difference in MOR and MOE of bending. Comply board was the highest and particle board showed slightly higher than sawdust board in MOR and MOE values. 4. In work to proportional limit and total work in bending, both particle and sawdust boards containing thicker wire diameter and more wire net sheets showed higher value. From these facts, it is conceivable that boards with thicker wire diameter and more wire net sheets show increasing resistance against external force. But there was no significant difference between particle and sawdust borads. 5. In resistance against delamination (internal bonding strength), both sawdust and particle boards containing wire net showed lower value than control, and also showed decreasing tendency with more number of wire net sheet composed. Particle board showed higher resistance against delamination than sawdust board. 6. In screw holding strength, sawdust board containing thicker wire diameter and more wire net sheets showed higher value, but particle board by press-lam method was higher than by conventional forming and veneer comply method. Screw holding strength of particle board was higher than that of sawdust board.

  • PDF

Resonance Frequency Analysis of A Baseball Bat by Impact Angle (가진 각도에 따른 야구배트의 공진주파수 분석)

  • Park, Sun-Hyang;Chung, Woo-Yang;Jung, Hwan-Hee;Lee, Sang-Joon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.777-783
    • /
    • 2015
  • Wood is an anisotropic material that shows the changes in hardness, quality and dimensions depending on the types of cells on three cross sections, size, array and so on. It can also be used in different ways according to its use, which requires a meticulous research, in order to maximize the utilization by understanding the nature and use; and by clarifying the theory and technologies. The research on relationship among wood's physical properties, density, and elasticity of modulus have been studied in Korea and abroad, but those studies were based on correlation gained through standardized specimen. Rather, the study on complete product is rare. Moreover, the previous reports are mostly concentrating on vibration mode and batting, though the wood's physical properties as a material have not been in the main focus. Therefore, this study will carried out for analyzing MOE through figuring material property out and comparing frequency adapting to the Canadian HardMaple bat. For comparison of material properties, we studied the annual ring and density of the bat; calculated the MOE with resonance frequency and formula (ASTM C1259); and verified the repulsive force of this material. As a result, the relevance of the resonance frequency and annual ring is weak, and in comparison in the grain direction in wood, the MOE value is higher when the grain direction in wood is excited horizontally than when is excited vertically, because the material is repulsive when grain direction is horizontal.

Physical and Mechanical Properties of Major Korean Ash Species (한국산 물푸레나무속(屬) 주요 수종의 물리 및 역학적 특성)

  • Hwang, Won-Joong;Kwon, Goo-Joong;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.95-101
    • /
    • 2002
  • Physical and mechanical properties of major Korean ash species were examined. For Fraxinus rhynchophylla and Fraxinus sieboldiana, green moisture content of sapwood was almost the same value as heartwood. Heartwood of Fraxinus mandshurica, however, had slightly higher moisture content than sapwood. Green and oven dry densities of F. mandshurica were lower than those of F. rhynchophylla and F. sieboldiana. Swelling and shrinkage of sapwood in F. sieboldiana showed somewhat higher value than those of F. rhynchophylla. Longitudinal compressive strength and modulus of elasticity in F. sieboldiana were lower values than those in the other species. Shearing strength in radial section was higher than that in tangential section of all samples. It could be noted that shearing strength of F. sieboldiana demonstrated higher value than that of the other species. Three species had excellent bending properties in MOR and MOE. Impact bending absorbed energy for F. rhynchophylla and F. mandshurica did not show any significant differences.