• Title/Summary/Keyword: MODIS land cover map

Search Result 28, Processing Time 0.027 seconds

Improvement of MODIS land cover classification over the Asia-Oceania region (아시아-오세아니아 지역의 MODIS 지면피복분류 개선)

  • Park, Ji-Yeol;Suh, Myoung-Seok
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.2
    • /
    • pp.51-64
    • /
    • 2015
  • We improved the MODerate resolution Imaging Spectroradiometer (MODIS) land cover map over the Asia-Oceania region through the reclassification of the misclassified pixels. The misclassified pixels are defined where the number of land cover types are greater than 3 from the 12 years of MODIS land cover map. The ratio of misclassified pixels in this region amounts to 17.53%. The MODIS Normalized Difference Vegetation Index (NDVI) time series over the correctly classified pixels showed that continuous variation with time without noises. However, there are so many unreasonable fluctuations in the NDVI time series for the misclassified pixels. To improve the quality of input data for the reclassification, we corrected the MODIS NDVI using Correction based on Spatial and Temporal Continuity (CSaTC) developed by Cho and Suh (2013). Iterative Self-Organizing Data Analysis (ISODATA) was used for the clustering of NDVI data over the misclassified pixels and land cover types was determined based on the seasonal variation pattern of NDVI. The final land cover map was generated through the merging of correctly classified MODIS land cover map and reclassified land cover map. The validation results using the 138 ground truth data showed that the overall accuracy of classification is improved from 68% of original MODIS land cover map to 74% of reclassified land cover map.

Classification of Land Cover over the Korean Peninsula using MODIS Data (MODIS 자료를 이용한 한반도 지면피복 분류)

  • Kang, Jeon-Ho;Suh, Myoung-Seok;Kwak, Chong-Heum
    • Atmosphere
    • /
    • v.19 no.2
    • /
    • pp.169-182
    • /
    • 2009
  • To improve the performance of climate and numerical models, concerns on the land-atmosphere schemes are steadily increased in recent years. For the realistic calculation of land-atmosphere interaction, a land surface information of high quality is strongly required. In this study, a new land cover map over the Korean peninsula was developed using MODIS (MODerate resolution Imaging Spectroradiometer) data. The seven phenological data set (maximum, minimum, amplitude, average, growing period, growing and shedding rate) derived from 15-day normalized difference vegetation index (NDVI) were used as a basic input data. The ISOData (Iterative Self-Organizing Data Analysis), a kind of unsupervised non-hierarchical clustering method, was applied to the seven phenological data set. After the clustering, assignment of land cover type to the each cluster was performed according to the phenological characteristics of each land cover defined by USGS (US. Geological Survey). Most of the Korean peninsula are occupied by deciduous broadleaf forest (46.5%), mixed forest (15.6%), and dryland crop (13%). Whereas, the dominant land cover types are very diverse in South-Korea: evergreen needleleaf forest (29.9%), mixed forest (26.6%), deciduous broadleaf forest (16.2%), irrigated crop (12.6%), and dryland crop (10.7%). The 38 in-situ observation data-base over South-Korea, Environment Geographic Information System and Google-earth are used in the validation of the new land cover map. In general, the new land cover map over the Korean peninsula seems to be better classified compared to the USGS land cover map, especially for the Savanna in the USGS land cover map.

Land Cover Classification over East Asian Region Using Recent MODIS NDVI Data (2006-2008) (최근 MODIS 식생지수 자료(2006-2008)를 이용한 동아시아 지역 지면피복 분류)

  • Kang, Jeon-Ho;Suh, Myoung-Seok;Kwak, Chong-Heum
    • Atmosphere
    • /
    • v.20 no.4
    • /
    • pp.415-426
    • /
    • 2010
  • A Land cover map over East Asian region (Kongju national university Land Cover map: KLC) is classified by using support vector machine (SVM) and evaluated with ground truth data. The basic input data are the recent three years (2006-2008) of MODIS (MODerate Imaging Spectriradiometer) NDVI (normalized difference vegetation index) data. The spatial resolution and temporal frequency of MODIS NDVI are 1km and 16 days, respectively. To minimize the number of cloud contaminated pixels in the MODIS NDVI data, the maximum value composite is applied to the 16 days data. And correction of cloud contaminated pixels based on the spatiotemporal continuity assumption are applied to the monthly NDVI data. To reduce the dataset and improve the classification quality, 9 phenological data, such as, NDVI maximum, amplitude, average, and others, derived from the corrected monthly NDVI data. The 3 types of land cover maps (International Geosphere Biosphere Programme: IGBP, University of Maryland: UMd, and MODIS) were used to build up a "quasi" ground truth data set, which were composed of pixels where the three land cover maps classified as the same land cover type. The classification results show that the fractions of broadleaf trees and grasslands are greater, but those of the croplands and needleleaf trees are smaller compared to those of the IGBP or UMd. The validation results using in-situ observation database show that the percentages of pixels in agreement with the observations are 80%, 77%, 63%, 57% in MODIS, KLC, IGBP, UMd land cover data, respectively. The significant differences in land cover types among the MODIS, IGBP, UMd and KLC are mainly occurred at the southern China and Manchuria, where most of pixels are contaminated by cloud and snow during summer and winter, respectively. It shows that the quality of raw data is one of the most important factors in land cover classification.

An Uncertainty Analysis of Topographical Factors in Paddy Field Classification Using a Time-series MODIS (시계열 MODIS 영상을 이용한 논 분류와 지형학적 인자에 따른 불확실성 분석)

  • Yoon, Sung-Han;Choi, Jin-Yong;Yoo, Seung-Hwan;Jang, Min-Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.5
    • /
    • pp.67-77
    • /
    • 2007
  • The images of MODerate resolution Imaging Spectroradiometer (MODIS) that provide wider swath and shorter revisit frequency than Land Satellite (Landsat) and Satellite Pour I' Observation de la Terre (SPOT) has been used fer land cover classification with better spatial resolution than National Oceanic and Atmosphere Administration/Advanced Very High Resolution Radiometer (NOAA/AVHRR)'s images. Due to the advantages of MODIS, several researches have conducted, however the results for the land cover classification using MODIS images have less accuracy of classification in small areas because of low spatial resolution. In this study, uncertainty of paddy fields classification using MODIS images was conducted in the region of Gyeonggi-do and the relation between this uncertainty of estimating paddy fields and topographical factors was also explained. The accuracy of classified paddy fields was compared with the land cover map of Environmental Geographic Information System (EGIS) in 2001 classified using Landsat images. Uncertainty of paddy fields classification was analyzed about the elevation and slope from the 30m resolution Digital Elevation Model (DEM) provided in EGIS. As a result of paddy classification, user's accuracy was about 41.5% and producer's accuracy was 57.6%. About 59% extracted paddy fields represented over 50 uncertainty in one hundred scale and about 18% extracted paddy fields showed 100 uncertainty. It is considered that several land covers mixed in a MODIS pixel influenced on extracted results and most classified paddy fields were distributed through elevation I, II and slope A region.

Ecological land cover classification of the Korean peninsula Ecological land cover classification of the Korean peninsula

  • Kim, Won-Joo;Lee, Seung-Gu;Kim, Sang-Wook;Park, Chong-Hwa
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.679-681
    • /
    • 2003
  • The objectives of this research are as follows. First, to investigate methods for a national-scale land cover map based on multi-temporal classification of MODIS data and multi-spectral classification of Landsat TM data. Second, to investigate methods to p roduce ecological zone maps of Korea based on vegetation, climate, and topographic characteristics. The results of this research can be summarized as follows. First, NDVI and EVI of MODIS can be used to ecological mapping of the country by using monthly phenological characteris tics. Second, it was found that EVI is better than NDVI in terms of atmospheric correction and vegetation mapping of dense forests of the country. Third, several ecological zones of the country can be identified from the VI maps, but exact labeling requires much field works, and sufficient field data and macro-environmental data of the country. Finally, relationship between land cover types and natural environmental factors such as temperature, precipitation, elevation, and slope could be identified.

  • PDF

Application of Bayesian Probability Rule to the Combination of Spectral and Temporal Contextual Information in Land-cover Classification (토지 피복 분류에서 분광 영상정보와 시간 문맥 정보의 결합을 위한 베이지안 확률 규칙의 적용)

  • Lee, Sang-Won;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.4
    • /
    • pp.445-455
    • /
    • 2011
  • A probabilistic classification framework is presented that can combine temporal contextual information derived from an existing land-cover map in order to improve the classification accuracy of land-cover classes that can not be discriminated well when using spectral information only. The transition probability is computed by using the existing land-cover map and training data, and considered as a priori probability. By combining the a priori probability with conditional probability computed from spectral information via a Bayesian combination rule, the a posteriori probability is finally computed and then the final land-cover types are determined. The method presented in this paper can be adopted to any probabilistic classification algorithms in a simple way, compared with conventional classification methods that require heavy computational loads to incorporate the temporal contextual information. A case study for crop classification using time-series MODIS data sets is carried out to illustrate the applicability of the presented method. The classification accuracies of the land-cover classes, which showed lower classification accuracies when using only spectral information due to the low resolution MODIS data, were much improved by combining the temporal contextual information. It is expected that the presented probabilistic method would be useful both for updating the existing past land-cover maps, and for improving the classification accuracy.

Sub-class Clustering of Land Cover over Asia considering 9-year NDVI and Climate Data

  • Lee, Ga-Lam;Han, Kyung-Soo;Kim, Do-Yong
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.289-301
    • /
    • 2011
  • In this paper an attempt has been made to classify Asia land cover considering climatic and vegetative characteristics. The sub-class clustering based on the 13 MODIS land cover classes (except water) over Asia was performed with the climate map and the NOVI derived from SPOT 5 VGT D10 data. The unsupervised classification for the sub-class clustering was performed in each land cover class, and total 74 clusters were determined over the study area. Via these clusters, the annual variations (from 1999 to 2007) of precipitation rate and temperature were analyzed as an example by a simple linear regression model. The various annual variations (negative or positive pattern) were represented for each cluster because of the various climate zones and NOVI annual cycles. Therefore, the detailed land cover map as the classification result by the sub-class clustering in this study can be useful information in modelling works for requiring the detailed climatic and vegetative information as a boundary condition.

Impacts of Land Surface Boundary Conditions on the Short-range weather Forecast of UM During Summer Season Over East-Asia (지면경계조건이 UM을 이용한 동아시아 여름철 단기예보에 미치는 영향)

  • Kang, Jeon-Ho;Suh, Myoung-Seok
    • Atmosphere
    • /
    • v.21 no.4
    • /
    • pp.415-427
    • /
    • 2011
  • In this study, the impacts of land surface conditions, land cover (LC) map and leaf area index (LAI), on the short-range weather forecast over the East-Asian region were examined using Unified Model (UM) coupled with the MOSES 2.2 (Met-Office Surface Exchange Scheme). Four types of experiments were performed at 12-km horizontal resolution with 38 vertical layers for two months, July and August 2009 through consecutive reruns of 72-hour every 12 hours, 00 and 12 UTC. The control experiment (CTRL) uses the original IGBP (International Geosphere-Biosphere Programme) LC map and old MODIS (MODerate resolution Imaging Spectroradiometer) LAI, the new LAI experiment (NLAI) uses improved monthly MODIS LAI. The new LC experiment (NLCE) uses KLC_v2 (Kongju National Univ. land cover), and the new land surface experiment (NLSE) uses KLC_v2 and new LAI. The reduced albedo and increased roughness length over southern part of China caused by the increased broadleaf fraction resulted in increase of land surface temperature (LST), air temperature, and sensible heat flux (SHF). Whereas, the LST and SHF over south-eastern part of Russia is decreased by the decreased needleleaf fraction and increased albedo. The changed wind speed induced by the LC and LAI changes also contribute the LST distribution through the change of vertical mixing and advection. The improvement of LC and LAI data clearly reduced the systematic underestimation of air temperature over South Korea. Whereas, the impacts of LC and LAI conditions on the simulation skills of precipitation are not systematic. In general, the impacts of LC changes on the short range forecast are more significant than that of LAI changes.

ASSESSMENT OF SPRING DROUGHT USING MODIS VEGETATION INDEX AND LAND SURFACE WATER INDEX

  • Park, Jung-Sool;Kim, Kyung-Tak;Lee, Kyo-Sung
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.563-566
    • /
    • 2006
  • In order for the evaluation and analysis of the spring drought which has been periodically occurring in Korean peninsula since 2000, the use of satellite image data is increasing to investigate temporal and spatial characteristics of the drought areas. The recent spring droughts in south Korea have some characteristics. It last for short period in spring when the activity of vegetation is not lively and it have large areal deviation in the severity of drought. In this study, considering the characteristics of the spring drought in Korean peninsular, the MODIS satellite image data which has superior spatial and radiometric resolutions was used for the analysis of the spring drought. In two basins having different spatial characteristics, the drought events were selected and their severities were analyzed using the MODIS NDVI, LSWI, and daily rainfall data since 2000, and the spatial characteristics of the drought area were analyzed using the DEM, land cover, and digital forest map of the study areas.

  • PDF

Applying Terra MODIS Satellite Image to Analysis of Current State of Upland Field (고랭지밭 현황 파악을 위한 Terra MODIS 위성영상 적용)

  • PARK, Min-Ji;CHOI, Young-Soon;SHIN, Hyung-Jin;LEE, Young-Joon;YU, Soon-Ju
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.3
    • /
    • pp.1-11
    • /
    • 2017
  • The main source of water pollution in Doam Lake is turbid incoming water from upland fields in the upper watershed. The large scale, elevation, and slope of this region means that it is inaccessible, and it is difficult to collect information and update data. Field survey results show that there is a difference between classification of upland fields and grasslands in the cadastral data and land-cover map. In this study, MODIS NDVI was calculated from May 2000 to September 2015 in order to improve classification accuracy of upland fields.