• Title/Summary/Keyword: MODIS image

Search Result 100, Processing Time 0.029 seconds

Agricultural drought monitoring using the satellite-based vegetation index (위성기반의 식생지수를 활용한 농업적 가뭄감시)

  • Baek, Seul-Gi;Jang, Ho-Won;Kim, Jong-Suk;Lee, Joo-Heon
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.4
    • /
    • pp.305-314
    • /
    • 2016
  • In this study, a quantitative assessment was carried out in order to identify the agricultural drought in time and space using the Terra MODIS remote sensing data for the agricultural drought. The Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) were selected by MOD13A3 image which shows the changes in vegetation conditions. The land cover classification was made to show only vegetation excluding water and urbanized areas in order to collect the land information efficiently by Type1 of MCD12Q1 images. NDVI and EVI index calculated using land cover classification indicates the strong seasonal tendency. Therefore, standardized Vegetation Stress Index Anomaly (VSIA) of EVI were used to estimated the medium-scale regions in Korea during the extreme drought year 2001. In addition, the agricultural drought damages were investigated in the country's past, and it was calculated based on the Standardized Precipitation Index (SPI) using the data of the ground stations. The VSIA were compared with SPI based on historical drought in Korea and application for drought assessment was made by temporal and spatial correlation analysis to diagnose the properties of agricultural droughts in Korea.

Satellite monitoring of large-scale air pollution in East Asia

  • Chung, Y.S.;Park, K.H.;Kim, H.S.;Kim, Y.S.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.786-789
    • /
    • 2003
  • The detection of sandstorms and industrial pollutants has been the emphasis of this study. Data obtained from meteorological satellites, NOAA and GMS, have been used for detailed analysis. MODIS and Landsat images are also used for the application of future KOMPSAT- 2. Verification of satellite observations has been made with air pollution data obtained by ground-level monitors. It was found that satellite measurements agree well with concentrations and variations of air pollutants measured on the ground, and that satellite technique is a very useful device for monitoring large-scale air pollution in East Asia. The quantitative analysis of satellite image data on air pollution is the goal in the future studies.

  • PDF

Estimation of Near Surface Air Temperature Using MODIS Land Surface Temperature Data and Geostatistics (MODIS 지표면 온도 자료와 지구통계기법을 이용한 지상 기온 추정)

  • Shin, HyuSeok;Chang, Eunmi;Hong, Sungwook
    • Spatial Information Research
    • /
    • v.22 no.1
    • /
    • pp.55-63
    • /
    • 2014
  • Near surface air temperature data which are one of the essential factors in hydrology, meteorology and climatology, have drawn a substantial amount of attention from various academic domains and societies. Meteorological observations, however, have high spatio-temporal constraints with the limits in the number and distribution over the earth surface. To overcome such limits, many studies have sought to estimate the near surface air temperature from satellite image data at a regional or continental scale with simple regression methods. Alternatively, we applied various Kriging methods such as ordinary Kriging, universal Kriging, Cokriging, Regression Kriging in search of an optimal estimation method based on near surface air temperature data observed from automatic weather stations (AWS) in South Korea throughout 2010 (365 days) and MODIS land surface temperature (LST) data (MOD11A1, 365 images). Due to high spatial heterogeneity, auxiliary data have been also analyzed such as land cover, DEM (digital elevation model) to consider factors that can affect near surface air temperature. Prior to the main estimation, we calculated root mean square error (RMSE) of temperature differences from the 365-days LST and AWS data by season and landcover. The results show that the coefficient of variation (CV) of RMSE by season is 0.86, but the equivalent value of CV by landcover is 0.00746. Seasonal differences between LST and AWS data were greater than that those by landcover. Seasonal RMSE was the lowest in winter (3.72). The results from a linear regression analysis for examining the relationship among AWS, LST, and auxiliary data show that the coefficient of determination was the highest in winter (0.818) but the lowest in summer (0.078), thereby indicating a significant level of seasonal variation. Based on these results, we utilized a variety of Kriging techniques to estimate the surface temperature. The results of cross-validation in each Kriging model show that the measure of model accuracy was 1.71, 1.71, 1.848, and 1.630 for universal Kriging, ordinary Kriging, cokriging, and regression Kriging, respectively. The estimates from regression Kriging thus proved to be the most accurate among the Kriging methods compared.

Application of Multi-satellite Sensors to Estimate the Green-tide Area (황해 부유 녹조 면적 산출을 위한 멀티 위성센서 활용)

  • Kim, Keunyong;Shin, Jisun;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.339-349
    • /
    • 2018
  • The massive green tide occurred every summer in the Yellow Sea since 2008, and many studies are being actively conducted to estimate the coverage of green tide through analysis of satellite imagery. However, there is no satellite images selection criterion for accurate coverage calculation of green tide. Therefore, this study aimed to find a suitable satellite image from for the comparison of the green tide coverage according to the spatial resolution of satellite image. In this study, Landsat ETM+, MODIS and GOCI images were used to coverage estimation and its spatial resolution is 30, 250 and 500 m, respectively. Green tide pixels were classified based on the NDVI algorithm, the difference of the green tide coverage was compared with threshold value. In addition, we estimate the proportion of the green tide in one pixel through the Linear Spectral Unmixing (LSU) method, and the effect of the difference of green tide ratio on the coverage calculation were evaluated. The result of green tide coverage from the calculation of the NDVI value, coverage of green tide usually overestimate with decreasing spatial resolution, maximum difference shows 1.5 times. In addition, most of the pixels were included in the group with less than 0.1 (10%) LSU value, and above 0.5 (50%) LSU value accounted for about 2% in all of three images. Even though classified as green tide from the NDVI result, it is considered to be overestimated because it is regarded as the same coverage even if green tide is not 100% filled in one pixel. Mixed-pixel problem seems to be more severe with spatial resolution decreases.

Estimation of Chlorophyll-a Concentrations in the Nakdong River Using High-Resolution Satellite Image (고해상도 위성영상을 이용한 낙동강 유역의 클로로필-a 농도 추정)

  • Choe, Eun-Young;Lee, Jae-Woon;Lee, Jae-Kwan
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.5
    • /
    • pp.613-623
    • /
    • 2011
  • This study assessed the feasibility to apply Two-band and Three-band reflectance models for chlorophyll-a estimation in turbid productive waters whose scale is smaller and narrower than ocean using a high spatial resolution image. Those band ratio models were successfully applied to analyzing chlorophyll-a concentrations of ocean or coastal water using Moderate Imaging Spectroradiometer(MODIS), Sea-viewing Wide Field-fo-view Sensor(SeaWiFS), Medium Resolution Imaging Spectrometer(MERIS), etc. Two-band and Three-band models based on band ratio such as Red and NIR band were generally used for the Chl-a in turbid waters. Two-band modes using Red and NIR bands of RapidEye image showed no significant results with $R^2$ 0.38. To enhance a band ratio between absorption and reflection peak, We used red-edge band(710 nm) of RapidEye image for Twoband and Three-band models. Red-RE Two-band and Red-RE-NIR Three-band reflectance model (with cubic equation) for the RapidEye image provided significance performances with $R^2$ 0.66 and 0.73, respectively. Their performance showed the 'Approximate Prediction' with RPD, 1.39 and 1.29 and RMSE, 24.8, 22.4, respectively. Another three-band model with quadratic equation showed similar performances to Red-RE two-band model. The findings in this study demonstrated that Two-band and Three-band reflectance models using a red-edge band can approximately estimate chlorophyll-a concentrations in a turbid river water using high-resolution satellite image. In the distribution map of estimated Chl-a concentrations, three-band model with cubic equation showed lower values than twoband model. In the further works, quantification and correction of spectral interferences caused by suspended sediments and colored dissolved organic matters will improve the accuracy of chlorophyll-a estimation in turbid waters.

A Basic Study for the Retrieval of Surface Temperature from Single Channel Middle-infrared Images (단일 밴드 중적외선 영상으로부터 표면온도 추정을 위한 기초연구)

  • Park, Wook;Lee, Yoon-Kyung;Won, Joong-Sun;Lee, Seung-Geun;Kim, Jong-Min
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.189-194
    • /
    • 2008
  • Middle-infrared (MIR) spectral region between 3.0 and $5.0\;{\mu}m$ in wavelength is useful for observing high temperature events such as volcanic activities and forest fire. However, atmospheric effects and sun irradiance in day time has not been well studied for this MIR spectral band. The objectives of this basic study is to evaluate atmospheric effects and eventually to estimate surface temperature from a single channel MIR image, although a typical approach utilize split-window method using more than two channels. Several parameters are involved for the correction including various atmospheric data and sun-irradiance at the area of interest. To evaluate the effect of sun irradiance, MODIS MIR images acquired in day and night times were used for comparison. Atmospheric parameters were modeled by MODTRAN, and applied to a radiative transfer model for estimating the sea surface temperature. MODIS Sea Surface Temperature algorithm based upon multi-channel observation was performed in comparison with results from the radiative transfer model from a single channel. Temperature difference of the two methods was $0.89{\pm}0.54^{\circ}C$ and $1.25{\pm}0.41^{\circ}C$ from the day-time and night-time images, respectively. It is also shown that the emissivity effect has by more largely influenced on the estimated temperature than atmospheric effects. Although the test results encourage using a single channel MR observation, it must be noted that the results were obtained from water body not from land surface. Because emissivity greatly varies on land, it is very difficult to retrieval land surface temperature from a single channel MIR data.

Grounding Line Change of Ronne Ice Shelf, West Antarctica, from 1996 to 2015 Observed by using DDInSAR

  • Han, Soojeong;Han, Hyangsun;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.1
    • /
    • pp.17-24
    • /
    • 2018
  • Grounding line of a glacier or ice shelf where ice bottom meets the ocean is sensitive to changes in the polar environment. Recent rapid changes of grounding lines have been observed especially in southwestern Antarctica due to global warming. In this study, ERS-1/2 and Sentinel-1A Synthetic Aperture Radar (SAR) image were interferometrically acquired in 1996 and 2015, respectively, to monitor the movement of the grounding line in the western part of Ronne Ice Shelf near the Antarctic peninsula. Double-Differential Interferometric SAR (DDInSAR) technique was applied to remove gravitational flow signal to detect grounding line from the interferometric phase due to the vertical displacement of the tide. The result showed that ERS-1/2 grounding lines are almost consistent with those from Rignot et al. (2011) which used the similar dataset, confirming the credibility of the data processing. The comparison of ERS-1/2 and Sentinle-1A DDInSAR images showed a grounding line retreat of $1.0{\pm}0.1km$ from 1996 to 2015. It is also proved that the grounding lines based on the 2004 MODIS Mosaic of Antarctica (MOA) images and digital elevation model searching for ice plain near coastal area (Scambos et al., 2017), is not accurate enough especially where there is a ice plain with no tidal motion.

Estimate Soil Moisutre Using Satelite Image and Data Mining (위성영상과 데이터 마이닝 기법을 이용한 토양수분 산정)

  • Kim, Gwang-Seob;Park, Han-Gyun;Cho, So-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1615-1619
    • /
    • 2010
  • 토양수분은 토양입자에 포함되어 있는 물을 의미하는 것으로 지표면과 대기간의 에너지 균형과 물 순환을 조절하는데 중요한 요소이다. 본 연구에서는 토양수분 산정을 위하여 2003년 1월부터 2008년 12월까지의 MODIS(Moderate Resolution Imaging Spectroradiometer) 위성관측 자료로부터 획득한 정규식생지수(NDVI: Normalized Difference Vegetation Index)자료와 지표면 온도자료, 우리나라 76개소 기상관측소 중에 자료의 보유기간이 30년 이하인 관측소와 섬 지역들을 제외한 57개 지점의 강수량, 토양온도 자료 및 우리나라 전역에 대한 토지피복, 유효토심자료를 이용하여 데이터 마이닝(Data Mining) 기법의 하나인 CART(Classification And Regression Tree) 기법을 이용하여 토양수분을 산정하였다. 먼저 신뢰성 높은 토양수분 관측 자료를 가진 용담댐 유역의 6개 지점에 대하여 토양수분을 산정하여 적용 가능성을 분석하였다. 3개 지점의 토양수분 관측치는 토양수분 산정 모형 수립에 사용하였으며 검증에 사용된 1개 지점의 토양수분의 관측치와 추정치 간의 상관계수를 확인한 결과 전체적인 토양수분의 거동을 잘 나타내고 있어 토양수분 추정 모형의 적용가능성을 확인하였다. 이를 이용하여 용담댐 유역의 토양수분 분포와 우리나라 전역에 대한 토양수분 분포도를 추정하였다. 신뢰할 수 있는 지상관측 토양수분 관측치가 다양한 지상조건에 대하여 존재하지 않는 한계가 있음에도 불구하고 제시된 토양수분산정 방법은 제한된 가용자료를 사용한 우리나라 전역의 토양수분 산정에 있어 합리적인 접근법이라 판단된다.

  • PDF

Impact Assessment of Forest Development on Net Primary Production using Satellite Image Spatial-temporal Fusion and CASA-Model (위성영상 시공간 융합과 CASA 모형을 활용한 산지 개발사업의 식생 순일차생산량에 대한 영향 평가)

  • Jin, Yi-Hua;Zhu, Jing-Rong;Sung, Sun-Yong;Lee, Dong-Ku
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.4
    • /
    • pp.29-42
    • /
    • 2017
  • As the "Guidelines for GHG Environmental Assessment" was revised, it pointed out that the developers should evaluate GHG sequestration and storage of the developing site. However, the current guidelines only taking into account the quantitative reduction lost within the development site, and did not consider the qualitative decrease in the carbon sequestration capacity of forest edge produced by developments. In order to assess the quantitative and qualitative effects of vegetation carbon uptake, the CASA-NPP model and satellite image spatial-temporal fusion were used to estimate the annual net primary production in 2005 and 2015. The development projects between 2006 and 2014 were examined for evaluate quantitative changes in development site and qualitative changes in surroundings by development types. The RMSE value of the satellite image fusion results is less than 0.1 and approaches 0, and the correlation coefficient is more than 0.6, which shows relatively high prediction accuracy. The NPP estimation results range from 0 to $1335.53g\;C/m^2$ year before development and from 0 to $1333.77g\;C/m^2$ year after development. As a result of analyzing NPP reduction amount within the development area by type of forest development, the difference is not significant by type of development but it shows the lowest change in the sports facilities development. It was also found that the vegetation was most affected by the edge vegetation of industrial development. This suggests that the industrial development causes additional development in the surrounding area and indirectly influences the carbon sequestration function of edge vegetaion due to the increase of the edge and influx of disturbed species. The NPP calculation method and results presented in this study can be applied to quantitative and qualitative impact assessment of before and after development, and it can be applied to policies related to greenhouse gas in environmental impact assessment.

A Study for Estimation of High Resolution Temperature Using Satellite Imagery and Machine Learning Models during Heat Waves (위성영상과 머신러닝 모델을 이용한 폭염기간 고해상도 기온 추정 연구)

  • Lee, Dalgeun;Lee, Mi Hee;Kim, Boeun;Yu, Jeonghum;Oh, Yeongju;Park, Jinyi
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_4
    • /
    • pp.1179-1194
    • /
    • 2020
  • This study investigates the feasibility of three algorithms, K-Nearest Neighbors (K-NN), Random Forest (RF) and Neural Network (NN), for estimating the air temperature of an unobserved area where the weather station is not installed. The satellite image were obtained from Landsat-8 and MODIS Aqua/Terra acquired in 2019, and the meteorological ground weather data were from AWS/ASOS data of Korea Meteorological Administration and Korea Forest Service. In addition, in order to improve the estimation accuracy, a digital surface model, solar radiation, aspect and slope were used. The accuracy assessment of machine learning methods was performed by calculating the statistics of R2 (determination coefficient) and Root Mean Square Error (RMSE) through 10-fold cross-validation and the estimated values were compared for each target area. As a result, the neural network algorithm showed the most stable result among the three algorithms with R2 = 0.805 and RMSE = 0.508. The neural network algorithm was applied to each data set on Landsat imagery scene. It was possible to generate an mean air temperature map from June to September 2019 and confirmed that detailed air temperature information could be estimated. The result is expected to be utilized for national disaster safety management such as heat wave response policies and heat island mitigation research.