• Title/Summary/Keyword: MODIS Satellite

Search Result 369, Processing Time 0.036 seconds

Preliminary Study of the Tsunami Effect from the Great East Japan Earthquake using the World First Geostationary Ocean Color Imager (GOCI) (천리안 해색위성 GOCI를 이용한 일본 동부 지진해일 영향 연구)

  • Son, Young-Baek;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.2
    • /
    • pp.255-266
    • /
    • 2012
  • The enormous disaster (Friday nightmare) occurred at 14:46 (JST) (05:46 UTC) on 11 March 2011, officially named "the 2011 Tohoku Earthquake and Tsunami". To monitor the variations of the marine environment after the earthquake, we used chlorophyll and Rrs(555) of GOCI and MODIS ocean color satellite data during March ~ May 2011. Before the earthquake, chlorophyll and Rrs(555) were relatively low around the Sendai areas. After the earthquake;their concentration and intensity were suddenly increased along the coast and the water column was disturbed by the tsunami wave. The severe distortions influenced by the tsunami occurred at less than 30 m water depth and the variations in offshore were difficult to discern the effect of the tsunami. The disturbance by the tsunami was still remained in the terrestrial environment after one month. However the ocean environment returned to the former condition in almost two month later.

Aerosol Optical Thickness Retrieval Using a Small Satellite

  • Wong, Man Sing;Lee, Kwon-Ho;Nichol, Janet;Kim, Young J.
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.605-615
    • /
    • 2010
  • This study demonstrates the feasibility of small satellite, namely PROBA platform with the compact high resolution imaging spectrometer (CHRIS), for aerosol retrieval in Hong Kong. The rationale of our technique is to estimate the aerosol reflectances by decomposing the Top of Atmosphere (TOA) reflectances from surface reflectance and Rayleigh path reflectances. For the determination of surface reflectances, the modified Minimum Reflectance Technique (MRT) is used on three winter ortho-rectified CHRIS images: Dec-18-2005, Feb-07-2006, Nov-09-2006. For validation purpose, MRT image was compared with ground based multispectral radiometer measurements and atmospherically corrected Landsat image. Results show good agreements between CHRIS-derived surface reflectance and both by ground measurement data as well as by Landsat image (r>0.84). The Root-Mean-Square Errors (RMSE) at 485, 551 and 660nm are 0.99%, 1.19%, and 1.53%, respectively. For aerosol retrieval, Look Up Tables (LUT) which are aerosol reflectances as a function of various AOT values were calculated by SBDART code with AERONET inversion products. The CHRIS derived Aerosol Optical Thickness (AOT) images were then validated with AERONET sunphotometer measurements and the differences are 0.05~0.11 (error=10~18%) at 440nm wavelength. The errors are relatively small compared to those from the operational moderate resolution imaging spectroradiometer (MODIS) Deep Blue algorithm (within 30%) and MODIS ocean algorithm (within 20%).

Estimating Corn and Soybean Yield Using MODIS NDVI and Meteorological Data in Illinois and Iowa, USA (MODIS NDVI와 기상자료를 이용한 미국 일리노이, 아이오와주 옥수수, 콩 수량 추정)

  • Lee, Kyung-Do;Na, Sang-Il;Hong, Suk-Young;Park, Chan-Won;So, Kyu-Ho;Park, Jae-Moon
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_2
    • /
    • pp.741-750
    • /
    • 2017
  • The objective of this study was to estimate corn and soybean yield in Illinois and Iowa in USA using satellite and meteorological data. MODIS products for NDVI were downloaded from a NASA website. Each layer was processed to convert projection and extract layers for NDVI. Relations of NDVI from 2002 to 2012 with corn and soybean yield were investigated to find informative days for rice yield estimation. Weather data for the county of study state duration from 2002 to 2012 to correlate crop yield. Multiple regression models based on MODIS NDVI and rainfall were made to estimate corn and soybean yields in study site. Corn yields estimated for 2013 were $10.17ton\;ha^{-1}$ in Illinois, $10.21ton\;ha^{-1}$ in Iowa and soybean yields estimated were $3.11ton\;ha^{-1}$ in Illinois, $2.58ton\;ha^{-1}$ in Iowa, respectively. Corn and Soybean yield distributions in 2013 were mapped to show spatial variability of crop yields of the Illinois and Iowa state.

Analysis of soil moisture response due to Eco-hydrological change (생태수문 변화에 따른 토양수분의 영향 분석)

  • Hur, Yoo-Mi;Choi, Min-Ha;Kim, Hyun-Woo;Kim, Sang-Dan;Ahn, Jae-Hyeon
    • Journal of Wetlands Research
    • /
    • v.13 no.2
    • /
    • pp.171-179
    • /
    • 2011
  • The main objective of this study is to estimate of the vegetation response induced by climate change to soil moisture. We investigated a relationship between vegetation activity and climate variables using Moderate Resolution Imaging Spectroradiometer (MODIS)-retrieved Normalized Difference Vegetation Index (NDVI) and soil moisture. NDVI which extracted from MODIS 13 Vegetation Indices Product was considered as an useful parameter to figure out a relationship with two types of soil moisture, which were observed at Rural Development Administration sites and estimated from Advanced Microwave Scanning Radiometer E (AMSR-E) satellite imagery. The correlation of MODIS-NDVI and ground measured soil moisture were observed, became much stronger when compared to soil moisture values with time lag (5days, 10days, 15days). The correlation patterns between NDVI and soil moisture with different time lag were related to soil texture. The results from this study will be useful to understand the role of vegetation in water balance control in various scales from regional to global climate change.

Estimation of Total Precipitable Water from MODIS Infrared Measurements over East Asia (MODIS 적외 자료를 이용한 동아시아 지역의 총가강수량 산출)

  • Park, Ho-Sun;Sohn, Byung-Ju;Chung, Eui-Seok
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.4
    • /
    • pp.309-324
    • /
    • 2008
  • In this study the retrieval algorithms have been developed to retrieve total precipitable water (TPW) from Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) infrared measurements using a physical iterative retrieval method and a split-window technique over East Asia. Retrieved results from these algorithms were validated against Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I) over ocean and radiosonde observation over land and were analyzed for investigating the key factors affecting the accuracy of results and physical processes of retrieval methods. Atmospheric profiles from Regional Data Assimilation and Prediction System (RDAPS), which produces analysis and prediction field of atmospheric variables over East Asia, were used as first-guess profiles for the physical retrieval algorithm. We used RTTOV-7 radiative transfer model to calculate the upwelling radiance at the top of the atmosphere. For the split-window technique, regression coefficients were obtained by relating the calculated brightness temperature to the paired radiosonde-estimated TPW. Physically retrieved TPWs were validated against SSM/I and radiosonde observations for 14 cases in August and December 2004 and results showed that the physical method improves the accuracy of TPW with smaller bias in comparison to TPWs of RDAPS data, MODIS products, and TPWs from split-window technique. Although physical iterative retrieval can reduce the bias of first-guess profiles and bring in more accurate TPWs, the retrieved results show the dependency upon initial guess fields. It is thought that the dependency is due to the fact that the water vapor absorption channels used in this study may not reflect moisture features in particular near surface.

Adjustment of A Simplified Satellite-Based Algorithm for Gross Primary Production Estimation Over Korea

  • Pi, Kyoung-Jin;Han, Kyung-Soo;Kim, In-Hwan;Lee, Tae-Yoon;Jo, Jae-Il
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.3
    • /
    • pp.275-291
    • /
    • 2013
  • Monitoring the global Gross Primary Pproduction (GPP) is relevant to understanding the global carbon cycle and evaluating the effects of interannual climate variation on food and fiber production. GPP, the flux of carbon into ecosystems via photosynthetic assimilation, is an important variable in the global carbon cycle and a key process in land surface-atmosphere interactions. The Moderate-resolution Imaging Spectroradiometer (MODIS) is one of the primary global monitoring sensors. MODIS GPP has some of the problems that have been proven in several studies. Therefore this study was to solve the regional mismatch that occurs when using the MODIS GPP global product over Korea. To solve this problem, we estimated each of the GPP component variables separately to improve the GPP estimates. We compared our GPP estimates with validation GPP data to assess their accuracy. For all sites, the correlation was close with high significance ($R^2=0.8164$, $RMSE=0.6126g{\cdot}C{\cdot}m^{-2}{\cdot}d^{-1}$, $bias=-0.0271g{\cdot}C{\cdot}m^{-2}{\cdot}d^{-1}$). We also compared our results to those of other models. The component variables tended to be either over- or under-estimated when compared to those in other studies over the Korean peninsula, although the estimated GPP was better. The results of this study will likely improve carbon cycle modeling by capturing finer patterns with an integrated method of remote sensing.

Characteristics of Soil Moisture Distributions at the Spatio-Temporal Scales Based on the Land Surface Features Using MODIS Images (MODIS 이미지를 이용한 지표특성에 따른 토양수분의 시·공간적 분포 특성)

  • Kim, Sangwoo;Shin, Yongchul;Lee, Taehwa;Lee, Sang-Ho;Choi, Kyung-Sook;Park, Younshik;Lim, Kyoungjae;Kim, Jonggun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.6
    • /
    • pp.29-37
    • /
    • 2017
  • In this study, we analyzed the impacts of land surface characteristics on spatially and temporally distributed soil moisture values at the Yongdam and Soyang-river dam watersheds in 2014 and 2015. The soil moisture, NDVI (Normalized Difference Vegetation Index) and temperature values at the spatio-temporal scales were estimated using satellite-based MODIS (MODerate Resolution Imaging Spectroradiometer) products. Then the Pearson correlations between soil moisture and land surface characteristics (NDVI, temperature and DEM-digital elevation model) were estimated and analyzed, respectively. Overall, the monthly soil moisture values at the time step were highly influenced by the precipitation amounts. Also, the results showed that the soil moisture has the strong correlation with DEM while the temperature was inversely correlated with the soil moisture. However the monthly correlations between NDVI and soil moisture were highly varied along the time step. These findings indicated that water loss near the land surface are highly occurred by soil and plant activities as evapotranspiration and infiltration during the no/less precipitation period. But the high precipitation amounts reduce the impacts of land surface characteristics because of saturated condition of land surface. Thus these results demonstrated that soil moisture values are highly correlated with land surface characteristics. Our findings can be useful for water resources/environmental management, agricultural drought, etc.

Influences of Physical Soil Properties on Drought Severity in the Central Great Plains Based on Satellite Data and a Digital Soil Database (인공위성자료와 디지털 토양자료를 통해 분석한 미중부 대평원 지역 가뭄정도에 미친 물리적 토양특성의 영향)

  • Sunyurp Park
    • Journal of the Korean Geographical Society
    • /
    • v.38 no.6
    • /
    • pp.935-948
    • /
    • 2003
  • The State Soil Geographic (STATSGO) database is a valuable source for assessment of soil properties at a state level. Using GIS techniques, eight physical soil properties were extracted from the database, including available water capacity, clay content, soil depth, slope, depth to water table, drainage, texture, and permeability. The influences of these soil properties on drought severity, which was estimated by NDVI departures from normal, were determined over western-central Kansas. Study results showed that seven soil properties had significant relationships with drought severity with correlation coefficients, ranging from -0.89 to 0.85. Thermal emission signals from the Moderate Resolution Imaging Spectroradiometer (MODIS) had a significant relationship with drought severity expressed by NDVI departure from normal and represented spatial progression of drought over time well. High thermal signals, indicating high soil moisture deficit, emerged in the western region and their spatial distribution changed over time. Different sets of soil factors influenced drought severity among early-drying and late-drying areas.

Visualization methods of Terra MODIS and GPM satellite orbits for Water Hazrd Information System Monitoring (수재해 정보시스템 모니터링을 위한 Terra MODIS, GPM 궤도의 시각화 방안)

  • PARK, Gwang-Ha;CHAE, Hyo-Sok;HWANG, Eui-Ho;LEE, Jeong-Ju
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.318-318
    • /
    • 2016
  • 위성은 준 실시간으로 국토 전체의 관측과 미계측/비접근 지역의 관측도 가능하여 가뭄, 홍수 등 수재해와 관련된 분석 자료로 활용되고 있으며, 위성 기반의 수재해 모니터링 적용성에 대한 연구 또한 수행되고 있다. 위성에서 관측된 자료는 NASA, JAXA 등의 위성 관리 센터에서 알고리즘을 적용하여 인터넷으로 제공하고, 최근 K-water에서는 수자원분야의 위성활용을 위해 위성 자료 수집 시스템을 갖추어 Aqua/Terra MODIS, GPM, GCOM-W1 등의 위성 자료를 수집하고 있다. 위성 자료는 5분~16일 등의 다양한 주기로 제공되고 있으며, 자료 타입, 측정 시간 등의 간단한 정보만 파일명으로 표시되어 위성의 위치(경위도) 및 해당 지점의 위성 자료를 얻기 위해서는 위성 자료를 확인해야만 하는 번거로움이 따른다. 본 연구에서는 순차적으로 관측된 위성 자료의 시 공간적 속성정보를 추출하고 해당 정보를 영상과 함께 맵핑하여, 시간의 흐름에 따른 위성 궤도의 시각화 방안을 제시하였다. 위성 궤도의 시각화 방안으로 사용된 위성 자료는 Terra MODIS의 'MOD02SSH', GPM GMI 센서의 'GPROF' 자료 타입을 사용하였다. 'MOD02SSH'는 5분 동안 5km의 공간해상도로 측정한 자료가 1개의 파일이며, 'GPROF'는 5분 동안 4km의 공간해상도로 측정한다. 공전 주기의 검증을 위해 케플러의 제3법칙을 적용한 Terra 위성의 공전주기는 98.75분으로 계산되며, 위성 자료의 공전주기는 98.87분으로 나타난다. 검증 결과 약 0.12초의 오차가 발생하며, 정확한 위성 고도와 높은 해상도의 위성 자료를 통해 오차의 감소가 가능하다. 이를 통해 시각화 된 동적 시계열 이미지는 시간에 따른 위성 궤도의 정보를 추출 할 수 있다. 이는 수재해 정보시스템의 모니터링을 위해 사용 가능하고, 시간에 따른 위성 궤도 정보를 통하여 필요한 시간대의 위성 위치 정보, 해당 지점의 관측 자료를 효율적으로 수집하여 자료 수집을 위한 시간 단축이 가능하며, 사용자 또는 관리자를 위한 모니터링 수행 또한 효율적인 운영이 가능할 것으로 사료된다.

  • PDF

A study on evapotranspiration using Terra MODIS images and soil water deficit index (Terra MODIS 위성영상과 토양수분 부족지수를 이용한 증발산량 산정 연구)

  • Jinuk Kim;Yonggwan Lee;Jeehun Chung;Jiwan Lee;Seongjoon Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.119-119
    • /
    • 2023
  • 본 연구에서는 Terra MODIS(MODerate resolution Imaging Spectroradiometer) 위성영상과 토양수분 부족지수(Soil Water Deficit Index, SWDI)를 이용하여 2012년부터 2022년까지 한반도 전국의 1km 공간 증발산량을 산정하였다. 공간 증발산량을 산정하기 위한 과정은 크게 두 가지로 구분된다. 첫 번째로 MODIS의 LST(Land Surface Temperature), NDVI(Normalized Difference Vegetation Index), 선행강우 및 무강우 누적일수를 이용해 1 km 공간 토양수분을 산정하였다. 농촌진흥청 토양수분관측망 자료 중 토지피복, 토양 속성을 고려하여 선정된 70개소 토양수분 실측데이터와 비교한 결과 지점별 평균 R2 0.63~0.90으로 유의미한 상관성을 나타내었다. 산정된 공간 토양수분은 생장저해수분점과 초기위조점의 관계를 이용한 SWDI로 변환하였다. 두 번째로 순 복사량, 기온 및 NDVI의 적은 수문인자를 통해 증발산량 산정이 가능한 MS-PT(Modified Satellite-based Priestley-Taylor) 모형을 기반으로 계절별 식생과 토양수분 상태를 고려하여 1 km 공간 증발산량을 산정하였다. MS-PT 모형에서 가정한 대기 증발 변수 Diurnal temperature (DT)와 지표 수분의 상관성 문제를 해결하기 위해 DT를 SWDI로 적용하였다. 모형 결과의 검증을 위해 국내 플럭스 타워 (설마천, 청미천, 덕유산) 증발산량 관측자료와의 결정계수(Coefficient of determination, R2), RMSE(Root Mean Square Error) 및 IOA(Index of Agreement)를 산정하였다. 본 연구의 결과로 생산되는 국내 증발산량의 시, 공간적 변동성은 증발산량을 통한 수문학적 가뭄지수 및 급성 가뭄을 파악하는데 활용될 수 있을 것으로 판단된다.

  • PDF