DOI QR코드

DOI QR Code

Adjustment of A Simplified Satellite-Based Algorithm for Gross Primary Production Estimation Over Korea

  • Pi, Kyoung-Jin (Department of Spatial Information Engineering, Pukyong National University) ;
  • Han, Kyung-Soo (Department of Spatial Information Engineering, Pukyong National University) ;
  • Kim, In-Hwan (Department of Spatial Information Engineering, Pukyong National University) ;
  • Lee, Tae-Yoon (Department of Environmental Engineering, Pukyong National University) ;
  • Jo, Jae-Il (Department of Spatial Information Engineering, Pukyong National University)
  • Received : 2013.06.12
  • Accepted : 2013.06.21
  • Published : 2013.06.30

Abstract

Monitoring the global Gross Primary Pproduction (GPP) is relevant to understanding the global carbon cycle and evaluating the effects of interannual climate variation on food and fiber production. GPP, the flux of carbon into ecosystems via photosynthetic assimilation, is an important variable in the global carbon cycle and a key process in land surface-atmosphere interactions. The Moderate-resolution Imaging Spectroradiometer (MODIS) is one of the primary global monitoring sensors. MODIS GPP has some of the problems that have been proven in several studies. Therefore this study was to solve the regional mismatch that occurs when using the MODIS GPP global product over Korea. To solve this problem, we estimated each of the GPP component variables separately to improve the GPP estimates. We compared our GPP estimates with validation GPP data to assess their accuracy. For all sites, the correlation was close with high significance ($R^2=0.8164$, $RMSE=0.6126g{\cdot}C{\cdot}m^{-2}{\cdot}d^{-1}$, $bias=-0.0271g{\cdot}C{\cdot}m^{-2}{\cdot}d^{-1}$). We also compared our results to those of other models. The component variables tended to be either over- or under-estimated when compared to those in other studies over the Korean peninsula, although the estimated GPP was better. The results of this study will likely improve carbon cycle modeling by capturing finer patterns with an integrated method of remote sensing.

Keywords

References

  1. Barford, C.C., S.C. Wofsy, M.L. Goulden, J.W. Munger, E.H. Pyle, S.P. Urbanski, L. Hutyra, S.R. Saleska, D. Fitzjarrald and K. Moore, 2001. Factors controlling long- and short-term sequestration of atmospheric $CO_2$ in a midlatitude forest. Science, 294: 1688-1691. https://doi.org/10.1126/science.1062962
  2. Coops, N.C., C.J. Ferster, R.H. Waring and J. Nightingale, 2009. Comparison of three models for predicting gross primary production across and within forested ecoregions in the contiguous United States. Remote Sensing of Environment, 113: 680-690. https://doi.org/10.1016/j.rse.2008.11.013
  3. Cohen, W.B., T.K. Maiersperger, S.T. Gower, D.P. Turner and S.W. Running, 2003. Comparisons of land cover and LAI estimates derived from ETM+ and MODIS for four sites in North America: a quality assessment of provisional MODIS products. Remote Sensing of Environment, 88, 233-255. https://doi.org/10.1016/j.rse.2003.06.006
  4. Field, C.B., 1991. Ecological scaling of carbon gain to stress and resource availability. In Response of Plants to Multiple Stresses. Physiological Ecology: a series of Monographs, Texts, and Treatises, Academic Press, San Diego, 35-65.
  5. Field, C.B., J.T. Randerson and C.M. Malmstrom, 1995. Global net primary productioncombining ecology and remote-sensing. Remote Sensing of Environment, 51: 74-88. https://doi.org/10.1016/0034-4257(94)00066-V
  6. Gao, B.C., 1996. NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58: 257-266. https://doi.org/10.1016/S0034-4257(96)00067-3
  7. Gebremichael, M. and A.P. Barros, 2006. Evaluation of MODIS Gross Primary Productivity (GPP) in tropical monsoon regions. Remote Sensing of Environment, 100: 150-166. https://doi.org/10.1016/j.rse.2005.10.009
  8. Goetz, S.J. and S.D. Prince, 1999. Modeling terrestrial carbon exchange and storage: evidence and implications of functional convergence in lightuse efficiency. Advances in Ecological Research, 28: 57-92. https://doi.org/10.1016/S0065-2504(08)60029-X
  9. Graham, E.A., S.S. Mulkey, K. Kitahima, N.G. Phillips and S.J. Wright, 2003. Cloud cover limits net $CO_2$ uptake and growth of a rainforest tree during tropical rainy seasons. Proceeding of the National Academy of Sciences of the United States of America, 100: 572-576. https://doi.org/10.1073/pnas.0133045100
  10. Heinsch, F.A., M. Reeves, P. Votava, S. Kang, C. Mailesi, M. Zhao, J. Glassy, W.M. Jolly, R. Loehman, C.F. Bowker, J.S. Kimball, R.R. Nemani, S.W. Running, 2003, User's guide GPP and NPP (MOD17A2/A3) products NASA MODIS land algorithm. Available online at: http://www.forestry.umt.edu/ntsg/.
  11. IPCC (Intergovernmental Panel on Climate Change)., 2001. Climate change 2001: The scientific basis. In Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, and D. Xiaosu (Eds.), Contribution of working group 1 to the third assessment report of the IPCC, 7 (UK: Cambridge University Press).
  12. Jung, M., M. Verstraete, N. Gobron, M. Reichstein, D. Papale, A. Bondeau, R. Monica, P. Bernard, 2008. Diagnostic assessment of European gross primary production. Global Change Biology, 14: 2349-2364. https://doi.org/10.1111/j.1365-2486.2008.01647.x
  13. Knutson, T.R., T.L. Delworth, K. Dixon and R.J. Stouffer, 1999. Model assessment of regional surface temperature trends (1947-1997). Journal of Geophysical Research, 104: 30981-30996. https://doi.org/10.1029/1999JD900965
  14. Monteith, J.L., 1972. Solar radiation and productivity in tropical ecosystems. Journal of Applied Ecology, 9: 747-766. https://doi.org/10.2307/2401901
  15. Monteith, J.L., 1977. Climate and efficiency of crop production in Britain.Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 284: 277-294.
  16. Myneni, R., Y. Knyazikhin, J. Glassy, P. Votava and N. Shabanov, 2003. User's guide FPAR, LAI (ESDT: MOD15A2) 8-day composite NASA MODIS land algorithm. Available online at: http://www.cybele.bu.edu/modismisr/products/modis/.
  17. Nemani, R.R., C.D. Keeling, H. Hashimoto, W.M. Jolly, S.C. Piper, C.J. Tucker, R.B. Myneni, S.W. Running, 2003. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300: 1560-1563. https://doi.org/10.1126/science.1082750
  18. Nemani, R.R., W. White, P. Thornton, K. Nishida, S. Reddy, S. Jenkins, S. Running, 2002. Recent trends in hydrologic balance have enhanced the terrestrial carbon sink in the United States. Geophysical Research Letters, 29: 106.1-106.4. https://doi.org/10.1029/2001GL014123
  19. Pi, K.J. and K.S. Han, 2010. Retrieval of the fraction of photosyntherically active radiation (FPAR) using SPOT/VEGETATION over Korea. Korean Journal of Remote Sensing, 26: 537-547. https://doi.org/10.7780/kjrs.2010.26.5.537
  20. Prince, S.D. and S.N. Goward, 1995. Global primary production: a remote sensing approach. Journal of Biogeography, 22: 815-835. https://doi.org/10.2307/2845983
  21. Raich, J.W., E.B. Rastetter, J.M. Melillo, D.W. Kicklighter, P.A. Steudler and B.J. Peterson, A. L. Grace, B. Moore III and C.J. Vorosmarty, 1991. Potential net primary productivity in South-America-application of a global-model. Ecological Applications, 1: 399-429. https://doi.org/10.2307/1941899
  22. Running, S.W., D.D. Baldocchi, D.P. Turner, S.T. Gower, P.S. Bakwin and K.A. Hibbard, 1999. A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data. Remote Sensing of Environment, 70: 108-127. https://doi.org/10.1016/S0034-4257(99)00061-9
  23. Running, S.W., P.E. Thornton, R. Nemani and J.M. Glassy, 2000. Global terrestrial gross and net primary productivity from the Earth Observing System. Methods in ecosystem science, 44-57 (New York: Springer Verlag).
  24. Schimel, D., J. Melillo, H. Tian, A.D. McGuire, D. Kicklighter, T. Kittel, N. Rosenbloom, S. Running, P. Thornton, D. Ojima, W. Parton, R. Kelly, M. Sykes, R. Neilson, B. Rizzo, 2000. Contribution of increasing $CO_2$ and climate to carbon storage by ecosystems in the united states. Science, 287: 2004-2006. https://doi.org/10.1126/science.287.5460.2004
  25. Scott, P.A., S.F.B. Tett, G.S. Jones, M.R. Allen, J.F.B. Mitchell and G.J. Jenkins, 2000. External control of twentieth century temperature variations by natural and anthropogenic forcings. Science, 290: 2133-2137. https://doi.org/10.1126/science.290.5499.2133
  26. Turner, D.P., W.D. Ritts, W.B. Cohen, S.T. Gower, M. Zhao, S.W. Running, S.C. Wofsy, S. Urbanski, A.L. Dunn, and J.W. Munger, 2003. Scaling gross primary production (GPP) over boreal and deciduous forest landscapes in support of MODIS GPP product validation. Remote Sensing of Environment, 88: 256-270. https://doi.org/10.1016/j.rse.2003.06.005
  27. Wang, H., G. Jia, C. Fu, J. Feng, T. Zhao, and Z. Ma, 2010. Deriving maximal light use efficiency from coordinated flux measurements and satellite data for regional gross primary production modeling. Remote Sensing of Environment, 114: 2248-2258. https://doi.org/10.1016/j.rse.2010.05.001
  28. Wofsy, S.C., M.L. Goulden, J.W. Munger, S.M. Fan, P.S. Bakwin, B.C. Daube, S.L Bassow, F.A Bazzaz, 1993. Net exchange of $CO_2$ in a midlatitude-forest. Science, 260: 1314-1317. https://doi.org/10.1126/science.260.5112.1314
  29. Xiao, X., D. Hollinger, J.D. Aber, M. Goltz, E.A. Davidson and Q.Y. Zhang, 2004a. Satellitebased modeling of gross primary production in an evergreen needleleaf forest. Remote Sensing of Environment, 89: 519-534. https://doi.org/10.1016/j.rse.2003.11.008
  30. Xiao, X., Q. Zhang, B. Braswell, S. Urbanski, S. Boles, S. Wofsy, B. Moore III, D. Ojima, 2004b. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sensing of Environment, 91: 256-270. https://doi.org/10.1016/j.rse.2004.03.010
  31. Yeom, J.M. and K.S. Han, 2010. Improved estimation of surface solar insolation using a neural network and MTSAT-1R data. Computers & Geosciences, 36:590-597. https://doi.org/10.1016/j.cageo.2009.08.012
  32. Zhao, M., S.W. Running and R.R. Nemani, 2006. Sensitivity of MODIS terrestrial primary production to the accuracy of meteorological reanalyses. Journal of Geophysical Research - Biogeosciences, 111: 1002-1014.