Plasma disruption in tokamak experiments is a challenging issue that causes damage to the device. Reliable prediction methods are needed, but the lack of full understanding of plasma disruption limits the effectiveness of physics-driven methods. Data-driven methods based on supervised learning are commonly used, and they rely on labelled training data. However, manual labelling of disruption precursors is a time-consuming and challenging task, as some precursors are difficult to accurately identify. The mainstream labelling methods assume that the precursor onset occurs at a fixed time before disruption, which leads to mislabeled samples and suboptimal prediction performance. In this paper, we present disruption prediction methods based on anomaly detection to address these issues, demonstrating good prediction performance on J-TEXT and EAST. By evaluating precursor onset times using different anomaly detection algorithms, it is found that labelling methods can be improved since the onset times of different shots are not necessarily the same. The study optimizes precursor labelling using the onset times inferred by the anomaly detection predictor and test the optimized labels on supervised learning disruption predictors. The results on J-TEXT and EAST show that the models trained on the optimized labels outperform those trained on fixed onset time labels.
A smart phone has been widely spread around world and makes people enjoy online shopping in any time and any place. Recently it also changes the distribution environment. O2O (Online-to-Offline) service becomes new normal due to its convenience of ease shopping of product and services. O2O service market shows steady and steep growth, It is reported that, however, 80% of the businesses has been discontinued within the first year because of unstable business models, customer dissatisfaction and distrust of service. Therefore, it is very important research issue to find out influential factors promoting continuous usage intention of O2O service. Previous study shows that it only considers online characteristics and lack of analysis about offline characteristics and social impact factors. The purpose of this paper is to find out continuous usage intention factors of O2O services by literature review, case analysis, and empirical test. A comprehensive research model and related hypothesis are developed and tested by using a structural equation, Survey was carried out among users who have used O2O service including payment service for at least once. Finally 611 samples are selected out of total 813 surveys. The result shows that the model is theoretically proved and 12 out of 17 hypotheses are accepted. The contribution of this paper is that it provides a new theoretical research model about continuous usage intention factors as well as practical guidelines about promoting continuous usage and growth strategies of O2O service.
This investigated the hydrogeochemical and isotopic characteristics of geothermal waters, groundwaters, and surface waters in Dongrae-gu, Busan, South Korea, in order to determine the origins of the salinity components in the geothermal waters, and their formation mechanisms and heat sources The geothermal waters are Na-Cl-type, distinct from surrounding groundwaters (Na-HCO3- and, Ca-HCO3- (SO4, Cl)-type) and surface waters (Ca-HCO3(SO4, Cl)-type). This indicates the geothermal waters formed at depth as compared with the groundwaters. δ18O and δD values of the geothermal waters are relatively depleted as compared with the groundwaters, due to altitude effects and deep circulation of the geothermal waters. Helium and neon isotope ratios (3 He/4He and, 4He/20Ne) of the geothermal waters plot on a single mixing line between mantle (3He = 3.76~4.01%) and crust (4He = 95.99~96.24 %), indirectly suggesting that the heat source is due to the decay of radioactive elements in rocks. The geothermal reservoir temperatures were calculated using the silica-enthalpy and Giggenbach models, yielding values of 82~130℃, and the depth of the geothermal reservoir is estimated to be 1.7~2.9 km below the surface. The correlation between Cl/Na and Cl/HCO3 for the Dongrae geothermal waters requires the input of salty water. The supply of saline composition is interpreted due to the dissolution of residual paleo-seawater.
Shin, Seung Sook;Ahn, Seunghyo;Song, Jinuk;Chae, Guk Seok;Park, Sang Deog
Journal of Korea Water Resources Association
/
v.57
no.6
/
pp.421-435
/
2024
In April 2023, a wildfire broke out in Gangneung located in the east coast region due to the influence of the Yanggang-local wind. In this study, GIS-based RUSLE(Revised Universal Soil Loss Equation) and SEMMA (Soil Erosion Model for Mountain Areas) were used to evaluate the erosion rate due to vegetation recovery in a small watershed of the Gangneung WUI(Wildland-Urban Interface) fire. The small watershed of WUI fire has a low altitude range of 10-30 m and the average slope of 10.0±7.4° which corresponds to a gentle slope. The soil texture was loamy sand with a high organic content and the deep soil depth. As herbaceous layer regenerated profusely in the gully after the wildfire, the NDVI (Normalized Difference Vegetation Index) reached a maximum of 0.55. Simulation results of erosion rates showed that RUSLE ranged from 0.07-94.9 t/ha/storm and SEMMA ranged from 0.24-83.6 t/ha/storm. RUSLE overestimated the average erosion rate by 1.19-1.48 times compared to SEMMA. The erosion rates were estimated to be high in the middle slope where burned pine trees were widely distributed and the slope was steep and to be relatively low in the hollow below the gully where herbaceous layer recovers rapidly. SEMMA showed a rapid increase in erosion sensitivity under at certain vegetation covers with NDVI below 0.25 (Ic = 0.35) on post-fire hillslopes. Gentle slopes with high organic content and rapid recovery of natural vegetation had relatively low erosion rate compared to steep slopes. As subsequent infrastructure and human damages due to sediment disaster by heavy rain is anticipated in WUI fire areas, the research results may be used as basic data for targeted management and decision making on the implementation of emergency treatment after the wildfire.
Purpose: Mitochondria play a crucial role in preserving skeletal muscle mass, and damage to mitochondria leads to muscle mass loss. This study investigated the effects of oxypeucedanin hydrate, a furanocoumarin isolated from Angelica dahurica radix, on myogenesis and mitochondrial function in vitro and in zebrafish models. Methods: C2C12 myotubes cultured in media containing 0.1, 1, 10, or 100 ng/mL oxypeucedanin hydrate were immunostained with myosin heavy chain (MHC), and then multinucleated MHC-positive cells were counted. The expressions of markers related to muscle differentiation, muscle protein degradation, and mitochondrial function were determined by quantitative reverse transcription polymerase chain reaction. To investigate the effects of oxypeucedanin hydrate on mitochondrial dysfunction, Tg(Xla.Eef1a1:mito-EGFP) zebrafish embryos were treated with 5-fluorouracil, leucovorin, and irinotecan (FOLFIRI) with or without oxypeucedanin hydrate and analyzed for mito-EGFP intensity and mitochondrial length. Results: Oxypeucedanin hydrate significantly increased MHC-positive multinucleated myotubes (≥ 3 nuclei) and increased the expression of the myogenic marker myosin heavy chain 4. However, it decreased the expressions of muscle-specific RING finger protein 1 and muscle atrophy f-box (markers of muscle protein degradation). Furthermore, oxypeucedanin hydrate enhanced the expressions of markers of mitochondrial biogenesis (peroxisome proliferator-activated receptor-gamma coactivator 1 alpha, transcription factor a mitochondrial, succinate dehydrogenase complex flavoprotein subunit A, and cytochrome c oxidase subunit 1) and mitochondrial fusion (optic atrophy 1). However, it reduced the expression of dynamin-related protein 1 (a mitochondrial fission regulator). Consistently, oxypeucedanin hydrate reduced FOLFIRI-induced mitochondrial dysfunction in the skeletal muscles of zebrafish embryos. Conclusion: The study indicates that oxypeucedanin hydrate promotes myogenesis by improving mitochondrial function, and thus, suggests oxypeucedanin hydrate has potential use as a nutritional supplement that improves muscle mass and function.
Evaluating carbon (C) and nitrogen (N) inputs from litterfall is important for soil nutrient management to enhance forest productivity and to understand the mechanisms of nutrient cycling in forest ecosystems. This study was conducted to compare C and N inputs from litterfall components of Cryptomeria japonica D. Don an d Chamaecyparis obtusa Endlicher planted in adjacent sites in the Jinju Research and Experimental Forests in Gyeongsangnam-do, South Korea. Litterfall into litter traps was collected at three-month intervals between December 2020 and December 2021, and the C and N concentrations of the litterfall components were measured. Litterfall amounts were not significantly different between the plantations, except for reproductive litterfall components. Litterfall accumulation peaked between December and March. The litterfall C concentration in the needle and seed litterfall was significantly higher for C. obtusa than for C. japonica. By contrast, the C concentrations in needle and flower litterfall differed seasonally. The mean N concentration of needle litterfall was significantly higher in C. japonica (0.96%) and C. obtusa collected between June and September (1.01%) than in the other seasons (C. japonica: 0.43%; C. obtusa: 0.53%). Carbon and N inputs in both plantations were highest in needle litterfall collected from December to March and lowest in needle litterfall collected from June to September. Annual C input by litterfall was similar between the plantations (C. japonica: 3,054 kg C ha-1 yr-1; C. obtusa: 3,129 kg C ha-1 yr-1), whereas total N input was higher for C. japonica (46.93 kg N ha-1 yr-1) than for C. obtusa (25.17 kg N ha-1 yr-1). The higher N input in the C. japonica plantation than in the C. obtusa plantation was associated with the input of reproductive components. These results could be applied to improve stand-scale models of C and N cycling by litterfall components in C. japonica an d C. obtusa plantations.
The increasing atmospheric imbalance caused by climate change leads to an elevation in precipitation, resulting in a heightened frequency of flooding. Consequently, there is a growing need for technology to detect and monitor these occurrences, especially as the frequency of flooding events rises. To minimize flood damage, continuous monitoring is essential, and flood areas can be detected by the Synthetic Aperture Radar (SAR) imagery, which is not affected by climate conditions. The observed data undergoes a preprocessing step, utilizing a median filter to reduce noise. Classification techniques were employed to classify water bodies and non-water bodies, with the aim of evaluating the effectiveness of each method in flood detection. In this study, the Otsu method and Support Vector Machine (SVM) technique were utilized for the classification of water bodies and non-water bodies. The overall performance of the models was assessed using a Confusion Matrix. The suitability of flood detection was evaluated by comparing the Otsu method, an optimal threshold-based classifier, with SVM, a machine learning technique that minimizes misclassifications through training. The Otsu method demonstrated suitability in delineating boundaries between water and non-water bodies but exhibited a higher rate of misclassifications due to the influence of mixed substances. Conversely, the use of SVM resulted in a lower false positive rate and proved less sensitive to mixed substances. Consequently, SVM exhibited higher accuracy under conditions excluding flooding. While the Otsu method showed slightly higher accuracy in flood conditions compared to SVM, the difference in accuracy was less than 5% (Otsu: 0.93, SVM: 0.90). However, in pre-flooding and post-flooding conditions, the accuracy difference was more than 15%, indicating that SVM is more suitable for water body and flood detection (Otsu: 0.77, SVM: 0.92). Based on the findings of this study, it is anticipated that more accurate detection of water bodies and floods could contribute to minimizing flood-related damages and losses.
This study aims to elucidate the characteristics of big tech platform companies' sports content business in an environment of rapid digital transformation. Specifically, this study examines the market structure of big tech platform companies with a focus on Amazon, revealing the role of sports content within this structure through an analysis of Amazon's sports marketing business and provides an outlook on the sports content business of big tech platform companies. Based on two-sided market platform business models, big tech platform companies incorporate sports content as a strategy to enhance the value of their platforms. Therefore, sports content is used as a tool to enhance the value of their platforms and to consolidate their monopoly position by maximizing profits by increasing the synergy of platform ecosystems such as infrastructure. Amazon acquires popular live sports broadcasting rights on a continental or national basis and supplies them to its platforms, which not only increases the number of new customers and purchasing effects, but also provides IT solution services to sports organizations and teams while planning and supplying various promotional contents, thus creates synergy across Amazon's platforms including its advertising business. Amazon also expands its business opportunities and increases its overall value by supplying live sports contents to Amazon Prime Video and Amazon Prime, providing technical services to various stakeholders through Amazon Web Services, and offering Amazon Marketing Cloud services for analyzing and predicting advertisers' advertising and marketing performance. This gives rise to a new paradigm in the sports marketing business in the digital era, stemming from the difference in market structure between big tech companies based on two-sided market platforms and legacy global companies based on one-sided markets. The core of this new model is a business through the development of various contents based on live sports streaming rights, and sports content marketing will become a major field of sports marketing along with traditional broadcasting rights and sponsorship. Big tech platform global companies such as Amazon, Apple, and Google have the potential to become new global sports marketing companies, and the current sports marketing and advertising companies, as well as teams and leagues, are facing both crises and opportunities.
Asia-Pacific Journal of Business Venturing and Entrepreneurship
/
v.19
no.3
/
pp.53-68
/
2024
Generative AI is receiving a lot of attention around the world, and ways to effectively utilize it in the business environment are being explored. In particular, since the public release of the ChatGPT service, which applies the GPT-3.5 model, a large language model developed by OpenAI, it has attracted more attention and has had a significant impact on the entire industry. This study focuses on the emergence of Generative AI, especially ChatGPT, which applies OpenAI's GPT-3.5 model, to investigate its impact on the startup industry and compare the changes that occurred before and after its emergence. This study aims to shed light on the actual application and impact of generative AI in the business environment by examining in detail how generative AI is being used in the startup industry and analyzing the impact of ChatGPT's emergence on the industry. To this end, we collected company information of generative AI-related startups that appeared before and after the ChatGPT announcement and analyzed changes in industry, business content, and investment information. Through keyword analysis, topic modeling, and network analysis, we identified trends in the startup industry and how the introduction of generative AI has revolutionized the startup industry. As a result of the study, we found that the number of startups related to Generative AI has increased since the emergence of ChatGPT, and in particular, the total and average amount of funding for Generative AI-related startups has increased significantly. We also found that various industries are attempting to apply Generative AI technology, and the development of services and products such as enterprise applications and SaaS using Generative AI has been actively promoted, influencing the emergence of new business models. The findings of this study confirm the impact of Generative AI on the startup industry and contribute to our understanding of how the emergence of this innovative new technology can change the business ecosystem.
Kwon Jung Kim;Eui Seon Choi;Ho Jun Kim;Jae Yong Park;Ki Young Lee
Journal of the Korean earth science society
/
v.45
no.3
/
pp.239-259
/
2024
In this study, a qualitative meta-analysis was conducted on research papers on earth science education to derive knowledge of students' understanding of specific science topics-greenhouse effect, global warming, and climate change-within the context of collective Pedagogical Content Knowledge (PCK). Twenty-two research papers addressing students' alternative conceptions (misconceptions) about these topics were selected and analyzed for their respective definitions, causes (mechanisms), and impacts. Semantic network analysis and a mental model framework were applied to synthesize the findings. The meta-analysis revealed several key insights: (1) Regarding the greenhouse effect, students often used the terms "greenhouse effect" and "global warming" interchangeably, lacked knowledge about the types of greenhouse gases, and misunderstood their roles. They commonly associated the greenhouse effect with environmental pollution or changes in the ozone layer, failing to recognize its relation to the heat balance between the surface and atmosphere. (2) Concerning global warming, students confused it with sea level rise and linked it to pollution, ozone layer changes, and glacier melting. They understood global warming as a disruption of the heat balance between the surface and atmosphere but had misconceptions about its environmental impacts. (3) In terms of climate change, students used the term interchangeably with global warming, weather change, and climate anomalies. They associated climate change with atmospheric pollution and ozone layer depletion but misunderstood its environmental impacts. As result, three mental models-categorical, mechanistic, and hierarchical misconceptions-were identified as collective PCK. The implications for enhancing earth science teachers' PCK were discussed based on these findings.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.