Probiotics are considered as the best effective alternatives to antibiotics. The aim of this study was to characterize the probiotic potential of lactobacilli for use in swine farming by using in vitro evaluation methods. A total of 106 lactic acid bacterial isolates, originating from porcine feces, were first screened for the capacity to survive stresses considered important for putative probiotic strains. Sixteen isolates showed notable acid and bile resistance, antibacterial activity, and adherence to intestinal porcine epithelial cells (IPEC-1). One isolate, LR1, identified as Lactobacillus reuteri, was selected for extensive study of its probiotic and functional properties in IPEC-1 cell models. L. reuteri LR1 exhibited good adhesion to IPEC-1 cells and could inhibit the adhesion of enterotoxigenic Escherichia coli (ETEC) to IPEC-1 cells. L. reuteri LR1 could also modulate transcript and protein expression of cytokines involved in inflammation in IPEC-1 cells; the Lactobacillus strain inhibited the ETEC-induced expression of proinflammatory transcripts (IL-6 and TNF-α) and protein (IL-6), and increased the level of anti-inflammatory cytokine (IL-10). Measurement of the permeation of FD-4 showed that L. reuteri LR1 could maintain barrier integrity in monolayer IPEC-1 cells exposed to ETEC. Immunolocalization experiments showed L. reuteri LR1 could also prevent ETEC-induced tight junction ZO-1 disruption. Together, these results indicate that L. reuteri LR1 exhibits desirable probiotic properties and could be a potential probiotic for use in swine production.
Korean Journal of Agricultural and Forest Meteorology
/
v.8
no.2
/
pp.86-96
/
2006
Ecoclimap-1, a new complete surface parameter global database at a 1-km resolution, was previously presented. It is intended to be used to initialize the soil-vegetation- atmosphere transfer schemes in meteorological and climate models. Surface parameters in the Ecoclimap-1 database are provided in the form of a per-class value by an ecoclimatic base map from a simple merging of land cover and climate maps. The principal objective of this ecoclimatic map is to consider intra-class variability of life cycle that the usual land cover map cannot describe. Although the ecoclimatic map considering land cover and climate is used, the intra-class variability was still too high inside some classes. In this study, a new strategy is defined; the idea is to use the information contained in S10 NDVI SPOT/VEGETATION profiles to split a land cover into more homogeneous sub-classes. This utilizes an intra-class unsupervised sub-clustering methodology instead of simple merging. This study was performed to provide a new ecolimatic map over Northeast Asia in the framework of Ecoclimap-2 global database construction for surface parameters. We used the University of Maryland's 1km Global Land Cover Database (UMD) and a climate map to determine the initial number of clusters for intra-class sub-clustering. An unsupervised classification process using six years of NDVI profiles allows the discrimination of different behavior for each land cover class. We checked the spatial coherence of the classes and, if necessary, carried out an aggregation step of the clusters having a similar NDVI time series profile. From the mapping system, 29 ecosystems resulted for the study area. In terms of climate-related studies, this new ecosystem map may be useful as a base map to construct an Ecoclimap-2 database and to improve the surface climatology quality in the climate model.
Kim, Soo-Ock;Chung, U-Ran;Kim, Seung-Heui;Choi, In-Myung;Yun, Jin-I.
Korean Journal of Agricultural and Forest Meteorology
/
v.11
no.4
/
pp.162-173
/
2009
Information on the expected geographical shift of suitable zones for growing crops under future climate is a starting point of adaptation planning in agriculture and is attracting much concern from policy makers as well as researchers. Few practical schemes have been developed, however, because of the difficulty in implementing the site-selection concept at an analytical level. In this study, we suggest site-selection criteria for quality Fuji apple production and integrate geospatial data and information available in public domains (e.g., digital elevation model, digital soil maps, digital climate maps, and predictive models for agroclimate and fruit quality) to implement this concept on a GIS platform. Primary criterion for selecting sites suitable for Fuji apple production includes land cover, topography, and soil texture. When the primary criterion is satisfied, climatic conditions such as the length of frost free season, freezing risk during the overwintering period, and the late frost risk in spring are tested as the secondary criterion. Finally, the third criterion checks for fruit quality such as color and shape. Land attributes related to these factors in each criterion were implemented in ArcGIS environment as relevant raster layers for spatial analysis, and retrieval procedures were automated by writing programs compatible with ArcGIS. This scheme was applied to the A1B projected climates for South Korea in the future normal years (2011-2040, 2041-2070, and 2071-2100) as well as the current climate condition observed in 1971-2000 for selecting the sites suitable for quality Fuji apple production in each period. Results showed that this scheme can figure out the geographical shift of suitable zones at landscape scales as well as the latitudinal shift of northern limit for cultivation at national or regional scales.
Many TV viewers use mainly portal sites in order to retrieve information related to broadcast while watching TV. However retrieving information that people wanted needs a lot of time to retrieve the information because current internet presents too much information which is not required. Consequentially, this process can't satisfy users who want to consume information immediately. Interactive video is being actively investigated to solve this problem. An interactive video provides clickable objects, areas or hotspots to interact with users. When users click object on the interactive video, they can see additional information, related to video, instantly. The following shows the three basic procedures to make an interactive video using interactive video authoring tool: (1) Create an augmented object; (2) Set an object's area and time to be displayed on the video; (3) Set an interactive action which is related to pages or hyperlink; However users who use existing authoring tools such as Popcorn Maker and Zentrick spend a lot of time in step (2). If users use wireWAX then they can save sufficient time to set object's location and time to be displayed because wireWAX uses vision based annotation method. But they need to wait for time to detect and track object. Therefore, it is required to reduce the process time in step (2) using benefits of manual annotation method and vision-based annotation method effectively. This paper proposes a novel annotation method allows annotator to easily annotate based on face area. For proposing new annotation method, this paper presents two steps: pre-processing step and annotation step. The pre-processing is necessary because system detects shots for users who want to find contents of video easily. Pre-processing step is as follow: 1) Extract shots using color histogram based shot boundary detection method from frames of video; 2) Make shot clusters using similarities of shots and aligns as shot sequences; and 3) Detect and track faces from all shots of shot sequence metadata and save into the shot sequence metadata with each shot. After pre-processing, user can annotates object as follow: 1) Annotator selects a shot sequence, and then selects keyframe of shot in the shot sequence; 2) Annotator annotates objects on the relative position of the actor's face on the selected keyframe. Then same objects will be annotated automatically until the end of shot sequence which has detected face area; and 3) User assigns additional information to the annotated object. In addition, this paper designs the feedback model in order to compensate the defects which are wrong aligned shots, wrong detected faces problem and inaccurate location problem might occur after object annotation. Furthermore, users can use interpolation method to interpolate position of objects which is deleted by feedback. After feedback user can save annotated object data to the interactive object metadata. Finally, this paper shows interactive video authoring system implemented for verifying performance of proposed annotation method which uses presented models. In the experiment presents analysis of object annotation time, and user evaluation. First, result of object annotation average time shows our proposed tool is 2 times faster than existing authoring tools for object annotation. Sometimes, annotation time of proposed tool took longer than existing authoring tools, because wrong shots are detected in the pre-processing. The usefulness and convenience of the system were measured through the user evaluation which was aimed at users who have experienced in interactive video authoring system. Recruited 19 experts evaluates of 11 questions which is out of CSUQ(Computer System Usability Questionnaire). CSUQ is designed by IBM for evaluating system. Through the user evaluation, showed that proposed tool is useful for authoring interactive video than about 10% of the other interactive video authoring systems.
With the rapid evolution of technology, the size, number, and the type of databases has increased concomitantly, so data mining approaches face many challenging applications from databases. One such application is discovery of fraud patterns from agricultural product wholesale transaction instances. The agricultural product wholesale market in Korea is huge, and vast numbers of transactions have been made every day. The demand for agricultural products continues to grow, and the use of electronic auction systems raises the efficiency of operations of wholesale market. Certainly, the number of unusual transactions is also assumed to be increased in proportion to the trading amount, where an unusual transaction is often the first sign of fraud. However, it is very difficult to identify and detect these transactions and the corresponding fraud occurred in agricultural product wholesale market because the types of fraud are more intelligent than ever before. The fraud can be detected by verifying the overall transaction records manually, but it requires significant amount of human resources, and ultimately is not a practical approach. Frauds also can be revealed by victim's report or complaint. But there are usually no victims in the agricultural product wholesale frauds because they are committed by collusion of an auction company and an intermediary wholesaler. Nevertheless, it is required to monitor transaction records continuously and to make an effort to prevent any fraud, because the fraud not only disturbs the fair trade order of the market but also reduces the credibility of the market rapidly. Applying data mining to such an environment is very useful since it can discover unknown fraud patterns or features from a large volume of transaction data properly. The objective of this research is to empirically investigate the factors necessary to detect fraud transactions in an agricultural product wholesale market by developing a data mining based fraud detection model. One of major frauds is the phantom transaction, which is a colluding transaction by the seller(auction company or forwarder) and buyer(intermediary wholesaler) to commit the fraud transaction. They pretend to fulfill the transaction by recording false data in the online transaction processing system without actually selling products, and the seller receives money from the buyer. This leads to the overstatement of sales performance and illegal money transfers, which reduces the credibility of market. This paper reviews the environment of wholesale market such as types of transactions, roles of participants of the market, and various types and characteristics of frauds, and introduces the whole process of developing the phantom transaction detection model. The process consists of the following 4 modules: (1) Data cleaning and standardization (2) Statistical data analysis such as distribution and correlation analysis, (3) Construction of classification model using decision-tree induction approach, (4) Verification of the model in terms of hit ratio. We collected real data from 6 associations of agricultural producers in metropolitan markets. Final model with a decision-tree induction approach revealed that monthly average trading price of item offered by forwarders is a key variable in detecting the phantom transaction. The verification procedure also confirmed the suitability of the results. However, even though the performance of the results of this research is satisfactory, sensitive issues are still remained for improving classification accuracy and conciseness of rules. One such issue is the robustness of data mining model. Data mining is very much data-oriented, so data mining models tend to be very sensitive to changes of data or situations. Thus, it is evident that this non-robustness of data mining model requires continuous remodeling as data or situation changes. We hope that this paper suggest valuable guideline to organizations and companies that consider introducing or constructing a fraud detection model in the future.
The prediction of bankruptcy has been extensively studied in the accounting and finance field. It can have an important impact on lending decisions and the profitability of financial institutions in terms of risk management. Many researchers have focused on constructing a more robust bankruptcy prediction model. Early studies primarily used statistical techniques such as multiple discriminant analysis (MDA) and logit analysis for bankruptcy prediction. However, many studies have demonstrated that artificial intelligence (AI) approaches, such as artificial neural networks (ANN), decision trees, case-based reasoning (CBR), and support vector machine (SVM), have been outperforming statistical techniques since 1990s for business classification problems because statistical methods have some rigid assumptions in their application. In previous studies on corporate bankruptcy, many researchers have focused on developing a bankruptcy prediction model using financial ratios. However, there are few studies that suggest the specific types of bankruptcy. Previous bankruptcy prediction models have generally been interested in predicting whether or not firms will become bankrupt. Most of the studies on bankruptcy types have focused on reviewing the previous literature or performing a case study. Thus, this study develops a model using data mining techniques for predicting the specific types of bankruptcy as well as the occurrence of bankruptcy in Korean small- and medium-sized construction firms in terms of profitability, stability, and activity index. Thus, firms will be able to prevent it from occurring in advance. We propose a hybrid approach using two artificial neural networks (ANNs) for the prediction of bankruptcy types. The first is a back-propagation neural network (BPN) model using supervised learning for bankruptcy prediction and the second is a self-organizing map (SOM) model using unsupervised learning to classify bankruptcy data into several types. Based on the constructed model, we predict the bankruptcy of companies by applying the BPN model to a validation set that was not utilized in the development of the model. This allows for identifying the specific types of bankruptcy by using bankruptcy data predicted by the BPN model. We calculated the average of selected input variables through statistical test for each cluster to interpret characteristics of the derived clusters in the SOM model. Each cluster represents bankruptcy type classified through data of bankruptcy firms, and input variables indicate financial ratios in interpreting the meaning of each cluster. The experimental result shows that each of five bankruptcy types has different characteristics according to financial ratios. Type 1 (severe bankruptcy) has inferior financial statements except for EBITDA (earnings before interest, taxes, depreciation, and amortization) to sales based on the clustering results. Type 2 (lack of stability) has a low quick ratio, low stockholder's equity to total assets, and high total borrowings to total assets. Type 3 (lack of activity) has a slightly low total asset turnover and fixed asset turnover. Type 4 (lack of profitability) has low retained earnings to total assets and EBITDA to sales which represent the indices of profitability. Type 5 (recoverable bankruptcy) includes firms that have a relatively good financial condition as compared to other bankruptcy types even though they are bankrupt. Based on the findings, researchers and practitioners engaged in the credit evaluation field can obtain more useful information about the types of corporate bankruptcy. In this paper, we utilized the financial ratios of firms to classify bankruptcy types. It is important to select the input variables that correctly predict bankruptcy and meaningfully classify the type of bankruptcy. In a further study, we will include non-financial factors such as size, industry, and age of the firms. Thus, we can obtain realistic clustering results for bankruptcy types by combining qualitative factors and reflecting the domain knowledge of experts.
Recent explosive increase of electronic commerce provides many advantageous purchase opportunities to customers. In this situation, customers who do not have enough knowledge about their purchases, may accept product recommendations. Product recommender systems automatically reflect user's preference and provide recommendation list to the users. Thus, product recommender system in online shopping store has been known as one of the most popular tools for one-to-one marketing. However, recommender systems which do not properly reflect user's preference cause user's disappointment and waste of time. In this study, we propose a novel recommender system which uses data mining and multi-model ensemble techniques to enhance the recommendation performance through reflecting the precise user's preference. The research data is collected from the real-world online shopping store, which deals products from famous art galleries and museums in Korea. The data initially contain 5759 transaction data, but finally remain 3167 transaction data after deletion of null data. In this study, we transform the categorical variables into dummy variables and exclude outlier data. The proposed model consists of two steps. The first step predicts customers who have high likelihood to purchase products in the online shopping store. In this step, we first use logistic regression, decision trees, and artificial neural networks to predict customers who have high likelihood to purchase products in each product group. We perform above data mining techniques using SAS E-Miner software. In this study, we partition datasets into two sets as modeling and validation sets for the logistic regression and decision trees. We also partition datasets into three sets as training, test, and validation sets for the artificial neural network model. The validation dataset is equal for the all experiments. Then we composite the results of each predictor using the multi-model ensemble techniques such as bagging and bumping. Bagging is the abbreviation of "Bootstrap Aggregation" and it composite outputs from several machine learning techniques for raising the performance and stability of prediction or classification. This technique is special form of the averaging method. Bumping is the abbreviation of "Bootstrap Umbrella of Model Parameter," and it only considers the model which has the lowest error value. The results show that bumping outperforms bagging and the other predictors except for "Poster" product group. For the "Poster" product group, artificial neural network model performs better than the other models. In the second step, we use the market basket analysis to extract association rules for co-purchased products. We can extract thirty one association rules according to values of Lift, Support, and Confidence measure. We set the minimum transaction frequency to support associations as 5%, maximum number of items in an association as 4, and minimum confidence for rule generation as 10%. This study also excludes the extracted association rules below 1 of lift value. We finally get fifteen association rules by excluding duplicate rules. Among the fifteen association rules, eleven rules contain association between products in "Office Supplies" product group, one rules include the association between "Office Supplies" and "Fashion" product groups, and other three rules contain association between "Office Supplies" and "Home Decoration" product groups. Finally, the proposed product recommender systems provides list of recommendations to the proper customers. We test the usability of the proposed system by using prototype and real-world transaction and profile data. For this end, we construct the prototype system by using the ASP, Java Script and Microsoft Access. In addition, we survey about user satisfaction for the recommended product list from the proposed system and the randomly selected product lists. The participants for the survey are 173 persons who use MSN Messenger, Daum Caf$\acute{e}$, and P2P services. We evaluate the user satisfaction using five-scale Likert measure. This study also performs "Paired Sample T-test" for the results of the survey. The results show that the proposed model outperforms the random selection model with 1% statistical significance level. It means that the users satisfied the recommended product list significantly. The results also show that the proposed system may be useful in real-world online shopping store.
Park, Sookuk;Sin, Jihwan;Jo, Sangman;Hyun, Cheolji;Kang, Hoon
Journal of the Korean Institute of Landscape Architecture
/
v.44
no.4
/
pp.100-108
/
2016
The climatic index for tourism(CIT) has recently been advanced, which includes complete human energy balance models such as physiological equivalent temperature(PET) and universal thermal climate index(UTCI). This study investigated human thermal sensation and comfort at Woljung-ri Beach, Jeju, Republic of Korea, in spring and summer 2015 for landscape planning and design in beach areas. Microclimatic data measurements and human thermal sensation/comfort surveys from ISO 10551 were conducted together. There were 869 adults that participated. As a result, perceptual and thermal preference that consider only physiological aspects had high coefficients of determination($r^2$) with PET in linear regression analyses: 92.8% and 87.6%, respectively. However, affective evaluation, personal acceptability and personal tolerance, which consider both physiological and psychological aspects, had low $r^2s$: 60.0%, 21.1% and 46.4%, respectively. However, the correlations between them and PET were all significant at the 0.01 level. The neutral PET range in perceptual for human thermal sensation was $25{\sim}27^{\circ}C$, but a PET range less or equal to 20% dissatisfaction, which was recommended by ASHRAE Standard 55, could not be achieved in perceptual. Only PET ranges in affective evaluation and personal tolerance affected by both aspects were qualified for the recommendation as $21{\sim}32^{\circ}C$ and $17{\sim}37^{\circ}C$, respectively. Therefore, the PET range of $21{\sim}32^{\circ}C$ is recommended to be used for the human thermal comfort zone of beach areas in landscape planning and design as well as tourism and recreational planning. PET heat stress level ranges on the beach were $2{\sim}5^{\circ}C$ higher than those in inland urban areas of the Republic of Korea. Also, they were similar to high results of tropical areas such as Taiwan and Nigeria, and higher than those of western and middle Europe and Tel Aviv, Israel.
Journal of the Korean Institute of Traditional Landscape Architecture
/
v.30
no.1
/
pp.66-75
/
2012
The Seoul Metropolitan Government selected the sign designs of cultural heritages through a public prize contest from a public design perspective and applied the selected design format to the signs of the cultural assets that were designated by the central and Seoul governments and located in Seoul Metropolitan area in 2008. For the purpose of monitoring the result, this study analyzed the installation state of the signs of Seoul tangible cultural properties located in Jongno-gu. The scope of the analysis of this study was expanded to cover the surrounding areas of cultural heritages in order to review the arrangement and design of such signs. The result of this study can be summarized as follows; firstly, not only the flow of travelers' movement but also the direction of sight, their locations in relation to the surrounding facilities or other installations and the integration with similar signs or notices were necessary to be considered in the arrangement of the signs; secondly, the current sings had low quality in terms of durability and readability and seemed utterly distance from the cultural assets indicated by the signs because they were finished with tempered glass; thirdly, the size, shape and materials of the signs were not harmonized with their surrounding areas as only one design was used in the entire cultural property sites without considering such natural or artificial backgrounds of individual signs as rocks, plants, walls or buildings. When selecting the design format of the signs of individual cultural properties that are located dispersively as Seoul tangible cultural properties, it is recommended to determine a group of most representative designs based on natural, man-made and cultural landscape rather than one unified design format and to use a unique well-matched sign for each cultural property. For this reason, this study selected alternative exemplary design models and proposed the type of signs appropriate for each cultural site.
The Transactions of the Korea Information Processing Society
/
v.7
no.11S
/
pp.3651-3667
/
2000
Recently, in the distributed multimedia environments based on internet, as radical growing technologies, the most of researchers focus on both streaming technology and distributed object thchnology, Specially, the studies which are tried to integrate the streaming services on the distributed object technology have been progressing. These technologies are applied to various stream service mamgements and protocols. However, the stream service management mexlels which are being proposed by the existing researches are insufficient for suporting the QoS of stream services. Besides, the existing models have the problems that cannot support the extensibility and the reusability, when the QoS-reiatedfunctions are being developed as a sub-module which is suited on the specific-purpose application services. For solving these problems, in this paper. we suggested a QoS Integrated platform which can extend and reuse using the distributed object technologies, and guarantee the QoS of the stream services. A structure of platform we suggested consists of three components such as User Control Module(UCM), QoS Management Module(QoSM) and Stream Object. Stream Object has Send/Receive operations for transmitting the RTP packets over TCP/IP. User Control ModuleI(UCM) controls Stream Objects via the COREA service objects. QoS Management Modulel(QoSM) has the functions which maintain the QoS of stream service between the UCMs in client and server. As QoS control methexlologies, procedures of resource monitoring, negotiation, and resource adaptation are executed via the interactions among these comiXments mentioned above. For constmcting this QoS integrated platform, we first implemented the modules mentioned above independently, and then, used IDL for defining interfaces among these mexlules so that can support platform independence, interoperability and portability base on COREA. This platform is constructed using OrbixWeb 3.1c following CORBA specification on Solaris 2.5/2.7, Java language, Java, Java Media Framework API 2.0, Mini-SQL1.0.16 and multimedia equipments. As results for verifying this platform functionally, we showed executing results of each module we mentioned above, and a numerical data obtained from QoS control procedures on client and server's GUI, while stream service is executing on our platform.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.