전력수요를 예측할 경우 가장 중요한 문제 중의 하나가 특수일 부하의 처리문제이다. 따라서 본 연구에서 길고(구정, 추석) 짧은(식목일, 현충일 등) 특수일 피크 부하를 신경회로망과 회귀모형을 이용하여 예측하는 방법을 제시한다. 신경회로망 모형의 특수일 부하 처리는 패턴 변환비를 이용하며, 4차의 직교 다항 회귀모형은 과거의 10년 (1985∼1994)간의 특수일 피크부하 자료를 이용하여 길고 짧은 특수일 부하를 예측한다. 특수일 피크 부하를 예측한 결과, 신경회로망 모형의 주간 평균 예측 오차율과 직교 다항 회귀모형의 예측 오차율을 분석한 결과 1∼2[%]대로 두 모형 모두 양호한 결과를 얻었다. 또한 4차의 직교 다항 회귀 모형의 수정결정계수 및 F 검정을 분석한 결과 구성한 예측 모형의 타당성을 확인하였다. 두 모형의 특수일 부하를 예측한 결과를 비교해 보면 긴 특수일 부하를 예측할 때는 패턴 변환비를 이용한 신경회로망 모형이 보다 더 효과적이었고, 짧은 특수일 부하를 예측할 경우에는 두 방법 모두 유효하였다.
곤충의 온도발육모형은 해충의 발생예찰모형을 비롯한 개체군모형에서 기본이 되는 요소이다. 본고에서는 곤충의 온도의존적 비선형 발육모형에 대하여 고찰하였다. 모형의 종류를 크게 경험모형과 생물리적 모형으로 구분하였으며, 수식의 유사성 내지 기원에 대한 유연관계에 따라 세분하였다. 발육률 곡선의 형태적 묘사에 적합한 수식을 적용하는 경험모형은 Stinner-계열, Logan-계열, 수행모형, 그리고 베타 분포모형으로 세분화하여 고찰하였다. 촉매반응을 바탕으로 하고 있는 생물리적 모형은 Eyring-모형, SM-모형, SS-모형, SSI-모형으로 이어지는 단계통으로 분류하였다. 본 연구에 포함된 각 모형의 개발과정과 형태적합 특성에 대하여 기술하였다.
해석적 또는 시뮬레이션 오차 모델은 공간 데이터가 가지는 위치오차의 분포를 설명 하는데 유용하다. 그러나 두 오차 모델은 위치오차를 모델링을 하기위하여 다른 접근 방법을 이용하므로 정의된 조건 내에서 올바른 위치오차를 예측 하는지 확인하는 내적 검증을 필요로 한다. 이에 본 논문은 오차타원과 에러밴드 모델을 이용하여 제시한 포인트와 라인 세그먼트 시뮬레이션 오차 모델을 내부적으로 검증하는 방법을 제안하였다. 시뮬레이션 오차 모델은 분산-공분산 행렬(variance-covariance matrix)의 변수에 의해 규정된 확률분포에 따라 몬테카를로 시뮬레이션을 이용하여 위치오차들을 생성한다. 검증절차에서는 시뮬레이션 모델에 의한 위치오차의 집합을 해석적 오차 모델에 의한 이론적 위치오차와 비교하였다. 결과적으로 제안된 시뮬레이션 오차 모델은 정의된 위치오차에 따라 동일한 공간 데이터의 위치적 불확실성을 실현함을 확인할 수 있었다.
A number of atomization and droplet breakup models have been developed and used to predict the diesel spray characteristics. Of the many atomization and droplet breakup models based on the breakup mechanism due to aerodynamic liquid and gas interaction, four models classified as mathematical models, such as TAB, modified TAB, DDB, WB and one of the hybrid model based on WB and TAB models were selected for the assessment of prediction ability of diesel spray dynamics. The assessment of these models by using KIVA-II code was performed by comparing with the experimental data of spray tip penetration and sauter mean diameter(SMD) from the literature. It is found that the prediction of spray tip penetration and SMD by the hybrid model was only influenced by the initial parcel number. All the atomization and droplet breakup models considered here was strongly dependent on the grid resolution. Therefore it is important to check the grid resolution to get an acceptable results in selecting the models. At low injection pressure, modified TAB model could only give the good agreement with experimental data of spray tip penetration and both of modified TAB and DDB models were recommendable for the prediction of SMD. At high injection pressure, hybrid model could only give the good agreement with the experimental data of spray tip penetration and the prediction of all of the selected models did not match the experimental data. Spray tip penetration was increased with the increase the $B_1$ and the increase of $B_1$ did not affected the prediction of SMD.
본 연구에서는 구강으로부터 채득된 인상체를 스캐닝하여 디지털 모형을 제작하였을 때 제작된 디지털 모형의 체적 안정성을 평가하고자 하였다. 그리하여 환자의 구강을 가정한 상악 모형을 본 모형으로 채택하였다. 본 모형과 동일한 증례의 연구 모형을 치과용 석고를 이용하여 총 20개의 석고 모형을 제작하였다. 제작된 연구 모형 20개를 치과용 기성 트레이와 두 종류의 치과용 인상재를 이용하여 20개 연구 모형을 대상으로 20개의 인상을 채득하였다. 채득된 20개의 인상체를 치과용 스캐너로 스캐닝하는 방식으로 디지털 모형으로 변환하였다. 체적 안정성을 평가하기 위하여 6개의 대표 지점을 선정한 뒤 디지털 모형과 함께 디지털 모형의 근간인 석고 모형을 계측하였다. 그 결과 계측된 모든 부위에서 디지털 모형이 석고 모형보다 체적이 작은 것으로 조사되었고, 이는 통계적으로 유의하였다(p<0.05). 이러한 결과들로 추론하여 보았을 때 환자의 구강으로부터 채득된 인상체를 스캐닝하여 제작한 디지털 모형의 체적은 환자의 구강보다 작다는 것을 알 수 있었다. 그러나 이 차이는 미비한 것으로 여러 선행 연구 결과들을 근거로 하였을 때 임상적으로 허용이 가능한 것으로 생각된다.
In this study, a new consensus technique for predicting tropical cyclone (TC) intensity in the western North Pacific was developed. The most important feature of the present consensus model is to select and combine the guidance numerical models with the best performance in the previous years based on various evaluation criteria and averaging methods. Specifically, the performance of the guidance models was evaluated using both the mean absolute error and the correlation coefficient for each forecast lead time, and the number of the numerical models used for the consensus model was not fixed. In averaging multiple models, both simple and weighted methods are used. These approaches are important because that the performance of the available guidance models differs according to forecast lead time and is changing every year. In particular, this study develops both a multi-consensus model (M-CON), which constructs the best consensus models with the lowest error for each forecast lead time, and a single best consensus model (S-CON) having the lowest 72-hour cumulative mean error, through on training process. The evaluation results of the selected consensus models for the training and forecast periods reveal that the M-CON and S-CON outperform the individual best-performance guidance models. In particular, the M-CON showed the best overall performance, having advantages in the early stages of prediction. This study finally suggests that forecaster needs to use the latest evaluation results of the guidance models every year rather than rely on the well-known accuracy of models for a long time to reduce prediction error.
The study focuses on the Repeated Measurements Design (RMD) which observations are periodically made for identical subjects within definite time periods. One of the purposes of this design is to monitor and keep track of replicated records within regular period over years. This paper also presents the classification models of RMD that is developed according to the number of factors in Between-Subject (BS) variates and Within-Subject (WS) variates. The types of models belong to each number of factors: One factor is 0BS 1WS. Two factors are 1BS 1WS and 0BS 2WS. Three factors are 1BS 2WS and 2BS 1WS. Lastly, the four factors include model of 2BS 2WS In addition, the study explains the generation mechanism of models for RMD using Generalizability Design (GD). GD is a useful method for practitioners to identify linear model of experimental design, since it generates a Venn diagram. Lastly, the research develops three types of 1BS 2WS RMDs with crossed factors and nested factors. Those are random models, mixed models and fixed models and they are presented by using Generalizability Design, $(S:A{\times}B){\times}C$. Moreover, the example of applications and its implementation steps of models developed in the study are presented for better comprehension.
본 연구에서는 중등학교에서 가르치는 두 유형의 산-염기 모델에 대한 화학 교사들의 인지 수준을 분석하였다. 이를 위하여 각 모델이 가지는 '이그노런스'를 분석한 선행 연구를 토대로, 교사들의 인지를 알아보는 설문을 개발하였다. 설문은 두 모델에 대한 불일치 상황을 제시한 산과 염기 반응에 관련된 문항과 산과 염기 해리와 관련된 문항 등 2문항이었다. 연구 대상자는 15명의 화학 교사들이었으며, 설문 분석 결과, 4가지 수준으로 교사의 인지가 분석되었다. 4가지 수준은, 모델을 모르는 경우, 한 모델만 이해하는 경우, 두 모델을 이해하고, 한 모델의 '이그노런스'를 지각하는 경우, 두 모델을 이해하고 두 모델의 '이그노런스'를 지각하는 경우였다. 가장 큰 비율의 교사들은 두 모델을 이해하고, 한 모델의 '이그노런스'를 인지하는 경우였다. 그러나 두 모델을 이해하고 두 모델의 '이그노런스'를 지각하는 경우의 비율은 매우 적었다. 이를 통해 모델과 '이그노런스'에 대한 화학교사들의 인지 수준을 높이기 위한 노력이 필요함을 주장하였다.
경시적 자료는 같은 개체를 반복 측정함으로써 시간의 흐름에 따른 반복 측정된 자료들 간의 상관관계가 존재한다. 따라서 경시적 자료분석에서는 이 상관관계를 분석할 때 개체 내 상관관계와 개체 간 변동성 모두를 고려해야 한다. 본 논문에서는 경시적 이진 자료를 분석하기 위한 모형 중 공변량의 모집단 평균 효과의 추정을 위해 주변화 모형에 집중하고자 한다. 경시적 이진 자료분석을 위한 주변화 모형으로는 주변화 임의효과, 주변화 전이, 주변화 전이 임의효과 모형이 있으며, 본 논문에서 이들 모형을 먼저 고찰하고, 그리고 모형들의 성능을 비교하기 위해 결측치가 없는 자료와 결측치가 있는 자료로 나눠서 모의실험을 진행한다. 모의실험에서 자료에 결측치가 있는 경우에 자료가 생성된 모형에 따른 성능 차이가 있음을 확인하였다. 마지막으로 주변화 모형을 이용하여 한국의료패널자료를 분석한다. 한국의료패널자료는 반응변수로 주관적 불건강 응답을 이진변수로 고려하였고, 여러 설명변수를 가진 모형을 비교하고 가장 적합한 모형을 제시한다.
This study presents the ability of seasonal forecast models to represent the observed midlatitude teleconnection associated with El Niño-Southern Oscillation (ENSO) events over the North American region for the winter months of December, January, and February. Further, the impacts of the associated errors on regional forecast performance for winter temperatures are evaluated, with a focus on 1-month-lead-time forecasts. In most models, there exists a strong linear relationship of temperature anomalies with ENSO, and, thus, a clear anomaly sign separation between both ENSO phases persists throughout the winter, whereas linear relationships are weak in observations. This leads to a difference in the temperature forecast performance between the two ENSO phases. Forecast verification scores show that the winter-season warming events during El Niño in northern North America are more correctly forecast in the models than the cooling events during La Niña and that the winter-season cooling events during El Niño in southern North America are also more correctly forecast in the models than warming events during La Niña. One possible reason for this result is that the remote atmospheric teleconnection pattern in the models is almost linear or symmetric between the El Niño and La Niña phases. The strong linear atmospheric teleconnection appears to be associated with the models' failure in simulating the westward shift of the tropical Pacific Ocean rainfall response for the La Niña phase as compared with that for the El Niño phase, which is attributed to the warmer central tropical Pacific in the models. This study highlights that understanding how the predictive performance of climate models varies according to El Niño or La Niña phases is very important when utilizing predictive information from seasonal forecast models.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.