• Title/Summary/Keyword: MN

Search Result 8,073, Processing Time 0.028 seconds

The micro-tensile bond strength of two-step self-etch adhesive to ground enamel with and without prior acid-etching (산부식 전처리에 따른 2단계 자가부식 접착제의 연마 법랑질에 대한 미세인장결합강도)

  • Kim, You-Lee;Kim, Jee-Hwan;Shim, June-Sung;Kim, Kwang-Mahn;Lee, Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.2
    • /
    • pp.148-156
    • /
    • 2008
  • Statement of problems: Self-etch adhesives exhibit some clinical benefits such as ease of manipulation and reduced technique-sensitivity. Nevertheless, some concern remains regarding the bonding effectiveness of self-etch adhesives to enamel, in particular when so-called 'mild' self-etch adhesives are employed. This study compared the microtensile bond strengths to ground enamel of the two-step self-etch adhesive Clearfil SE Bond (Kuraray) to the three-step etch-and- rinse adhesive Scotchbond Multi-Purpose (3M ESPE) and the one-step self-etch adhesive iBond (Heraeus Kulzer). Purpose: The purpose of this study was to determine the effect of a preceding phosphoric acid conditioning step on the bonding effectiveness of a two-step self-etch adhesive to ground enamel. Material and methods: The two-step self-etch adhesive Clearfil SE Bond non-etch group, Clearfil SE Bond etch group with prior 35% phosphoric acid etching, and the one-step self-etch adhesive iBond group were used as experimental groups. The three-step etch-and-rinse adhesive Scotchbond Multi-Purpose was used as a control group. The facial surfaces of bovine incisors were divided in four equal parts cruciformly, and randomly distributed into each group. The facial surface of each incisor was ground with 800-grit silicon carbide paper. Each adhesive group was applied according to the manufacturer's instructions to ground enamel, after which the surface was built up using Light-Core (Bisco). After storage in distilled water at $37^{\circ}C$ for 1 week, the restored teeth were sectioned into enamel beams approximately 0.8*0.8mm in cross section using a low speed precision diamond saw (TOPMET Metsaw-LS). After storage in distilled water at $37^{\circ}C$ for 1 month, 3 months, microtensile bond strength evaluations were performed using microspecimens. The microtensile bond strength (MPa) was derived by dividing the imposed force (N) at time of fracture by the bond area ($mm^2$). The mode of failure at the interface was determined with a microscope (Microscope-B nocular, Nikon). The data of microtensile bond strength were statistically analyzed using a one-way ANOVA, followed by Least Significant Difference Post Hoc Test at a significance level of 5%. Results: The mean microtensile bond strength after 1 month of storage showed no statistically significant difference between all adhesive groups (P>0.05). After 3 months of storage, adhesion to ground enamel of iBond was not significantly different from Clearfil SE Bond etch (P>>0.05), while Clearfil SE Bond non-etch and Scotchbond Multi-Purpose demonstrated significantly lower bond strengths (P<0.05), with no significant differences between the two adhesives. Conclusion: In this study the microtensile bond strength to ground enamel of two-step self-etch adhesive Clearfil SE Bond was not significantly different from three-step etch-and-rinse adhesive Scotchbond Multi-Purpose, and prior etching with 35% phosphoric acid significantly increased the bonding effectiveness of Clearfil SE Bond to enamel at 3 months.

Studies on Nutrio-physiological Response of Rice Plant to Root Environment (근부환경(根部環境)에 따른 수도(水稻)의 영양생리적(營養生理的) 반응(反應)에 관(關)한 연구(硏究))

  • Park, J.K.;Kim, Y.S.;Oh, W.K.;Park, H.;Yazawa, F.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.2 no.1
    • /
    • pp.53-68
    • /
    • 1969
  • The nutriophysiological response of rice plant to root environment was investigated with eye observation of root development and rhizosphere in situation. The results may be summarized as follows: 1) The quick decomposition of organic matter, added in low yield soil, caused that the origainal organic matter content was reached very quickly, in spite of it low value. In high yield soil the reverse was seen. 2) In low yield soil root development, root activity and T/R value were very low, whereas addition of organic matter lowered them still wore. This might be contributed to gas bubbles around the root by the decomposition of organic matter. 3) Varietal difference in the response to root environment was clear. Suwon 82 was more susceptible to growth-inhibitine conditions on low-yield soil than Norin 25. 4) Potassium uptake was mostly hindered by organic matter, while some factors in soil hindered mostly posphorus uptake. When the organic matter was added to such soil, the effect of them resulted in multiple interaction. 5) The root activity showed a correlation coeffieient of 0.839, 0.834 and 0.948 at 1% level with the number of root, yield of aerial part and root yield, respectively. At 5% level the root-activity showed correlation-coefficient of 0.751, 0.670 and 0.769 with the uptake of the aerial part of respectively. N, P and K and a correlation-coefficient of 0.729, 0.742 and 0.815 with the uptake of the root of respectively N.P. and K. So especially for K-uptake a high correlation with the root-activity was found. 6) The nitrogen content of the roots in low-yield soil was higher than in high-yield soil, while the content in the upper part showed the reverse. It may suggest ammonium toxicity in the root. In low-yield soil Potassium and Phosphorus content was low in both the root and aerial part, and in the latter particularly in the culm and leaf sheath. 7) The content of reducing sugar, non-recuding sugar, starh and eugar, total carbohydrates in the aerial part of plants in low yield soil was higher than in high yield soil. The content of them, especially of reducing sugar in the roots was lower. It may be caused by abnormal metabolic consumption of sugar in the root. 8) Sulfur content was very high in the aerial part, especially in leaf blade of plants on low yield soil and $P_2O_5/S$ value of the leaf blade was one fifth of that in high yield soil. It suggests a possible toxic effect of sulfate ion on photophosphorization. 9) The high value of $Fe/P_2O_5$ of the aerial part of plants in low yield soil suggests the possible formation of solid $Fe/PO_4$ as a mechanical hindrance for the translocation of nutrients. 10) Translocation of nutrients in the plant was very poor and most nutrients were accumulated in the root in low yield soil. That might contributed to the lack of energy sources and mechanical hindrance. 11) The amount of roots in high yield soil, was greater than that in low yield soil. The in high-yield soil was deep, distribution of the roots whereas in the low-yield soil the root-distribution was mainly in the top-layer. Without application of Nitrogen fertilizer the roots were mainly distributed in the upper 7cm. of topsoil. With 120 kg N/ha. root were more concentrated in the layer between 7cm. and 14cm. depth. The amount of roots increased with the amount of fertilizer applied.

  • PDF

Physico-Chemical Properties of Aggregate By-Products as Artificial Soil Materials (골재 부산물의 용토재 활용을 위한 특성 분석)

  • Yang, Su-Chan;Jung, Yeong-Sang;Kim, Dong-Wook;Shim, Gyu-Seop
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.5
    • /
    • pp.418-428
    • /
    • 2007
  • Physical and chemical properties of the aggregate by-products including sludge and crushed dust samples collected from the 21 private companies throughout the country were analyzed to evaluate possible usage of the by-products as artificial soil materials for plantation. The pH of the materials ranged from 8.0 to 11.0. The organic matter content was $2.85g\;kg^{-1}$, and the total nitrogen content and available phosphate content were low as 0.7 percents and $12.98mg\;kg^{-1}$, respectively. Exchangeable $Ca^{2+}$, $Mg^{2+}$, $K^+$, and $Na^+$ were 2.29, 0.47, 0.02 and $0.05cmol\;kg^{-1}$, respectively. Heavy metal contents were lower than the limits regulated by environmental law of Korea. Textural analysis showed that most of the materials were silt loam with low water holding capacity ranged from 0.67 to 7.41 percents, and with low hydraulic conductivity ranged from 0.4 to $2.8m\;s^{-1}$. Mineralogical analysis showed that the aggregate by product materials were mostly composed of silicate, alumina and ferric oxides except calcium oxide dominant materials derived from limestones. The primary minerals were quartz, feldspars and dolomites derived from granite and granitic gneiss materials. Some samples derived from limestone material showed calcite and graphite together with the above minerals. According to the result, it can be concluded that the materials could be used as the artificial soil material for plantation after proper improvement of the physico-chemical properties and fertility.