• Title/Summary/Keyword: MMP-2 activation

Search Result 201, Processing Time 0.025 seconds

Effect of Treponema lecithinolyticum lipopolysaccharide on matrix metalloproteinase-9 expression (Treponema lecithinolyticum lipopolysaccharide에 의한 matrix metalloproteinase-9의 발현)

  • Nam, Jeong-Ah;Moon, Sun-Young;Lee, Jin-Wook;Cha, Jeong-Heon;Choi, Bong-Kyu;Yoo, Yun-Jung
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.3
    • /
    • pp.675-685
    • /
    • 2005
  • Bone resorption involves sequential stages of osteoclast precursor migration and differentiation of osteoclast precursors into multinucleated osteoclasts. Stromal cell derived factor (SDF)-1 is a chemotactic factor for osteoclast precursor migration. Matrix metalloproteinase (MMP)-9 is involved in migration of osteoclast precursors and activation of $interleukin(IL)-1{\beta}$. Alveolar bone destruction is a characteristic feature of periodontal disease. Treponema lecithinolyticum is a oral spirochete isolated from the periodontal lesions. The effect of lipopolysaccharide(LPS) from T. lecithinolyticum on expression of SDF-1 and MMP-9 was examined in cocultures of bone marrow cells and osteblasts derived from mouse calvariae. T. lecithinolyticum LPS increased expression of MMP-9 in the coculture. Polymyxin B, an inhibitor of LPS, abolished the increase of MMP-9 mRNA expression by LPS. LPS did not increase the expression of SDF-1, $IL-1{\beta}$ and tumor necrosis $factor(TNF)-{\alpha}$ mRNA in cocultures. Prostaglandin $E_2(PGE_2)$ up-regulated the expression of MMP-9 and NS398, an inhibitor of $PGE_2$ synthesis, down-regulated the induction of MMP-9 expression by T. lecitbinolyticm LPS. These results suggest that T. lecitbinolyticm LPS increases MMP-9 expression in bone cells via $PGE_2$ and that the induction of MMP-9 expression by T. lecitbinolyticm LPS is involved in alveolar bone destruction of periodontitis patients by the increase of osteoclast precursor migration and the activation of bone resorption-inducing cytokine.

Effects of Hormones on the Expression of Matrix Metalloproteinases and Their Inhibitors in Bovine Spermatozoa

  • Kim, Sang-Hwan;Song, Young-Seon;Hwang, Sue-Yun;Min, Kwan-Sik;Yoon, Jong-Taek
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.3
    • /
    • pp.334-342
    • /
    • 2013
  • Proteases and protease inhibitors play key roles in most physiological processes, including cell migration, cell signaling, and cell surface and tissue remodeling. Among these, the matrix metalloproteinase (MMPs) pathway is one of the most efficient biosynthetic pathways for controlling the activation of enzymes responsible for protein degradation. This also indicates the association of MMPs with the maturation of spermatozoa. In an attempt to investigate the effect of MMP activation and inhibitors in cultures with various hormones during sperm capacitation, we examined and monitored the localization and expression of MMPs (MMP-2 and MMP-9), tissue inhibitors of metalloproteinases (TIMP-2 and TIMP-3), as well as their expression profiles. Matured spermatozoa were collected from cultures with follicle-stimulating hormone (FSH), luteinizing hormone (LH), and Lutalyse at 1 h, 6 h, 18 h, and 24 h. ELISA detected the expression of MMP-2, MMP-9, TIMP-2, and TIMP-3 in all culture media, regardless of medium type (FSH-supplemented fertilization Brackett-Oliphant medium (FFBO), LH-supplemented FBO (LFBO), or Lutalyse-supplemented FBO (LuFBO)). TIMP-2 and TIMP-3 expression patterns decreased in LFBO and LuFBO. MMP-2 and MMP-9 activity in FBO and FFBO progressively increased from 1 h to 24 h but was not detected in LFBO and LuFBO. The localization and expression of TIMP-2 and TIMP-3 in sperm heads was also measured by immunofluorescence analysis. However, MMPs were not detected in the sperm heads. MMP and TIMP expression patterns differed according to the effect of various hormones. These findings suggest that MMPs have a role in sperm viability during capacitation. In conjunction with hormones, MMPs play a role in maintaining capacitation and fertilization by controlling extracellular matrix inhibitors of sperm.

Anti-HIV-1 Activity of Gelatin Hydrolysate Derived from Alaska Pollack Theragra chalcogramma Skin (명태(Theragra chalcogramma) 껍질 유래 젤라틴 가수분해물의 항 HIV-1 효능)

  • Park, Sun-Joo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.5
    • /
    • pp.594-599
    • /
    • 2016
  • Infection with HIV (Human immunodeficiency virus), over time, develops into acquired immunodeficiency syndrome (AIDS). The development of non-toxic and effective anti-HIV drugs is one of the most promising strategies for the treatment of AIDS. In this study, we investigated the anti-HIV-1 activity of gelatin hydrolysates from Alaska pollack skin. Gelatin hydrolysates were prepared using four enzymes (alcalase, flavourzyme, neutrase, and pronase E). Among these, the pronase E gelatin hydrolysate was found to inhibit HIV-1 infection in the human T cell-line MT4. It exhibited inhibitory activity on HIV-1IIIB-induced cell lysis, reverse transcriptase activity, and viral p24 production at noncytotoxic concentrations. Moreover, it decreased the activation of matrix metalloproteinase-2 (MMP-2) in vitro. Because HIV infection-induced activation of MMP-2 can accelerate collagen resolution and collapse of the immune system, pronase E gelatin hydrolysate might prevent the activation of MMP-2 in cells, resulting in collagen stabilization and immune cell homeostasis consistent with anti-HIV activation. These results suggest that pronase E gelatin hydrolysate could potentially be incorporated into a novel therapeutic agent for HIV/AIDS patients.

Effect of Anti-oxidant, Anti-inflammatory and Anti-invasive of PMA-induced Matrix Metalloproteinase (MMP-2) and MMP-9 Activities of Water Extract and Solvent Fractions of Saururus Chinensis (삼백초 물 추출물과 유기용매 분획물의 항산화, 항염증 및 PMA에 의해 유도된 MMP-2 및 MMP-9활성 침윤 억제 효과)

  • Kim, Jun-Ho;Kim, Eun-Jung
    • Journal of Life Science
    • /
    • v.26 no.5
    • /
    • pp.584-591
    • /
    • 2016
  • Saururus chinensis is a perennial plants, its flavonoid compound is known to exhibit anti-oxidative activity. This study was aimed to investigate the effect of Water Extract and Solvent Fractions of Saururus chinensis on antioxidant, anti-inflammatory and anti-invasive of Phorbol 12-myristate 13-acetate (PMA)-induced matrix metalloproteinase (MMP-2) and MMP-9 activities. Plant samples were fractionated into hexane, CHCl3, ethyl acetate, butanol, and water fractions, and each of these was assayed individually. The water fraction showed the highest extraction yield at 9.25%(w/w). Anti-oxidative activity was analyzed by DPPH assay. Cell viability was detected by the MTS assay. Anti-inflammatory activity was assayed by the nitric oxide (NO) production in mouse macrophage Raw 264.7 cells. The activity and mRNA expression of MMP-2 and MMP-9 in human oral squamous carcinoma YD-10B cells were examined by zymography and RT-PCR. As results, MMP-2/-9 activation was increased in PMA induced YD-10B cells. In PMA-treated YD-10B cells, the increased mRNA expression and protein activation of MMP-2/-9 were significantly inhibited in the ethyl acetate fraction. The ethyl acetate fraction showed the highest anti-oxidative activity at 73.38%. The ethyl acetate fraction at non-cytotoxic concentrations significantly exhibited the anti-inflammatory activity of Raw 264.7 cells in dose-dependent manner. In conclusion, these findings demonstrate that the ethyl acetate fraction obtained from a chinensis water extract potentiates a promising therapeutic anti-invasive agent and, therefore, as an anti-cancer drug for cancer prevention and therapy in oral cancer.

Activities of Recombinant MT1-MMP Expressed in PANC-1 Cells. (PANC-1세포에서 발현된 재조합 MT1-MMP의 효소 활성)

  • Kim, Hye-Nan;Chung, Hye-Shin
    • Journal of Life Science
    • /
    • v.18 no.3
    • /
    • pp.422-425
    • /
    • 2008
  • Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a membrane-associated zinc-dependent endoproteinase involved in extracellular matrix remodeling. MT1-MMP hydrolyzes ECM proteins like collagen and is involved in cancer cell migration and metastasis. Caveolins are integral membrane proteins and play a role in formation of caveolae, specialized membrane microdomains involved in clathrin-independent endocytosis. Recombinant MT1-MMP was transiently expressed in PANC-1 cells. Cells expressing recombinant MT1-MMP were able to hydrolyze collagen and migrate on collagen coated trans-well. Both subjacent collagen degradation and the cell migration conferred by recombinant MT1-MMP were inhibited by co-transfection of plasmids containing caveolin-1 cDNA. The results support that MT1-MMP is localized in lipid raft of the membrane and MT1-MMP activities in invasive cells could be inhibited by caveolin.

Expression Analysis of Matrix Metalloproteinases and Tissue Inhibitor of Matrix Metalloproteinases from In Vitro Maturation Oocytes Complexes in Porcine (돼지 체외성숙난자에서 MMPs와 TIMPs의 발현 분석)

  • Kim, Sang-Hwan;Kang, Hyun-Ah;Kim, Dae-Seung;Lee, Myeong-Seop;Seo, Kang-Suk;Min, Kwan-Sik;Yoon, Jong-Taek
    • Reproductive and Developmental Biology
    • /
    • v.34 no.1
    • /
    • pp.55-62
    • /
    • 2010
  • Matrix metalloproteinases (MMP) play important roles in extracellular matrix (ECM) remodeling during ovarian follicular development, oocytes development and ovulation. In an attempt to investigate the effect of MMP activation in development cumulus-oocytes complexes, we examined the localization and expression of MMP, and monitored MMP expression profile. Cumulus-oocytes complexes were collected and matured in vitro for 24 hr, 36 hr and 48 hr. A mRNA expression of MMP-2, MMP-9, TIMP-2 and TIMP-3 was detected in all culture medium regardless of CC, DC and CDCs. Activity of MMP-2 in the DC progressively was increased from 24 hr to 48 hr. But MMP-9 was not detected in all culture medium. The localization of MMP-2 was also measured by immunohistochemistry analysis. The MMP-2 and TIMP-2 was detected in cumulus cell and oocyte zone pellucida. Expression of MMP-2 protein in the COCs was progressively increased from 24 hr to 48 hr. However, MMP-9 protein was progressively decreased from 24 hr to 48 hr. And TIMP-2 protein was most highly expressed in the CDCs 36 hr. Expression of TIMP-3 protein in the CDCs was progressively increased from 24 hr to 48 hr. In conclusion, these results suggest that MMP-2 plays a role in maintaining normal maturation and development by controlling the ECM inhibitor concentration on cumulus cell and oocytes.

Vitamin D Inhibits Expression and Activity of Matrix Metalloproteinase in Human Lung Fibroblasts (HFL-1) Cells

  • Kim, Seo Hwa;Baek, Moon Seong;Yoon, Dong Sik;Park, Jong Seol;Yoon, Byoung Wook;Oh, Byoung Su;Park, Jinkyeong;Kim, Hui Jung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.77 no.2
    • /
    • pp.73-80
    • /
    • 2014
  • Background: Low levels of serum vitamin D is associated with several lung diseases. The production and activation of matrix metalloproteinases (MMPs) may play an important role in the pathogenesis of emphysema. The aim of the current study therefore is to investigate if vitamin D modulates the expression and activation of MMP-2 and MMP-9 in human lung fibroblasts (HFL-1) cells. Methods: HFL-1 cells were cast into three-dimensional collagen gels and stimulated with or without interleukin-$1{\beta}$ (IL-$1{\beta}$) in the presence or absence of 100 nM 25-hydroxyvitamin D (25(OH)D) or 1,25-dihydroxyvitamin D ($1,25(OH)_2D$) for 48 hours. Trypsin was then added into the culture medium in order to activate MMPs. To investigate the activity of MMP-2 and MMP-9, gelatin zymography was performed. The expression of the tissue inhibitor of metalloproteinase (TIMP-1, TIMP-2) was measured by enzyme-linked immunosorbent assay. Expression of MMP-9 mRNA and TIMP-1, TIMP-2 mRNA was quantified by real time reverse transcription polymerase chain reaction. Results: IL-$1{\beta}$ significantly stimulated MMP-9 production and mRNA expression. Trypsin converted latent MMP-2 and MMP-9 into their active forms of MMP-2 (66 kDa) and MMP-9 (82 kDa) within 24 hours. This conversion was significantly inhibited by 25(OH)D (100 nM) and $1,25(OH)_2D$ (100 nM). The expression of MMP-9 mRNA was also significantly inhibited by 25(OH)D and $1,25(OH)_2D$. Conclusion: Vitamin D, 25(OH)D, and $1,25(OH)_2D$ play a role in regulating human lung fibroblast functions in wound repair and tissue remodeling through not only inhibiting IL-$1{\beta}$ stimulated MMP-9 production and conversion to its active form but also inhibiting IL-$1{\beta}$ inhibition on TIMP-1 and TIMP-2 production.

LIGHT is Expressed in Foam Cells and Involved in Destabilization of Atherosclerotic Plaques through Induction of Matrix Metalloproteinase-9 and IL-8

  • Kim, Won-Jung;Lee, Won-Ha
    • IMMUNE NETWORK
    • /
    • v.4 no.2
    • /
    • pp.116-122
    • /
    • 2004
  • Background: LIGHT (TNFSF14) is a member of tumor necrosis factor superfamily and is the ligand for TR2 (TNFRSF14/HVEM). LIGHT is known to have proinflammatory roles in atherosclerosis. Methods: To find out the expression pattern of LIGHT in atherosclerotic plaques, immunohistochemical analysis was performed on human carotid atherosclerotic plaque specimens. LIGHT induced atherogenic events using human monocytic cell line THP-1 were also investigated. Results: Immunohistochemical analysis revealed expression of LIGHT and TR2 in foam cell rich regions in the atherosclerotic plaques. Double immunohistochemical analysis further confirmed the expression of LIGHT in foam cells. Stimulation of THP-1 cells, which express TR2, with either recombinant LIGHT or immobilized anti-TR2 monoclonal antibody induced interleukin-8 and matrix metalloproteinase(MMP)-9. Electrophoretic mobility shift assay demonstrated that LIGHT induces nuclear localization of transcription factor, nuclear factor $(NF)-{\kappa}B$. LIGHT induced activation of MMP-9 is mediated by $NF-{\kappa}B$, since treatment of THP-1 cells with the $NF-{\kappa}B$ inhibitor PDTC (pyrrolidine dithiocarbamate) completely blocked the activation of MMP-9. Conclusion: These data indicate that LIGHT is expressed in foam cells in atherosclerotic plaques and is involved in atherogenesis through activation of pro-atherogenic cytokine IL-8 and destabilization of plaque by inducing matrix degrading enzyme.

The cancer/testis antigen CAGE induces MMP-2 through the activation of NF-κB and AP-1

  • Kim, Young-Mi;Jeoung, Doo-Il
    • BMB Reports
    • /
    • v.42 no.11
    • /
    • pp.758-763
    • /
    • 2009
  • Cancer-associated antigen (CAGE) induces the expression of matrix metalloproteinase-2 (MMP-2) by activating Akt, which in turn interacts with inhibitory kappa kinase $\beta$ ($I{\kappa}K{\beta}$) to activate nuclear factor ${\kappa}B$ (NF-${\kappa}B$). Akt and p38 mitogen activated protein kinase (p38 MAPK) are necessary for CAGE-mediated induction of the AP-1 subunit JunB, whereas extracellular regulated kinase (ERK) is necessary for the induction of fos-related antigen-1 (Fra-1). Induction of MMP-2 by CAGE requires activator of protein-1 (AP-1) to be bound. Specific binding of JunB to MMP-2 promoter sequences was shown by chromatin immunoprecipitation (ChIP) analysis.

The effect of lead on matrix metalloproteinase-9 expression in rat primary glial cells

  • Park, Min-Sik;Lee, Woo-Jong;Kim, Young-Eun;Ko, Kwang-Ho
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.84-84
    • /
    • 2003
  • Lead has long been considered as a toxic environmental pollutant, which severely damages central nervous system. Lead can cause hypo- and de-myelination, and glial cells are closely related with myelination or demyelination. Matrix metalloproteinases (MMPs) are proteolytic enzymes that are involved in the remodelling of the extracellular matrix in a variety of physiological and pathological processes. MMPs also seem to be important in the pathogenesis of inflammatory demyelinating diseases of the central and peripheral nervous system. In this study, we investigated whether lead affects MMP-9 expression in rat primary glial cells. Treatment of 0.1-5 ${\mu}$M lead dose- and time-dependently increased MMP-9 expression in rat primary glial cells. The activity of MMPs was determined using zymography. Lead activated Erk(1/2) but neither of the other endogenous MAP kinases, p38 or JNK. Inhibition of Erk(1/2) activation by PD98059, a MEK inihibitor, prevented lead-induced expression of MMP-9. The results of the present study suggest that lead intoxication may adversely affect brain function at least in part by inducing MMP-9 expression through Erk(1/2) activation in primary glial cells.

  • PDF